Publications

sprungmarken_marker_332

Publications 2024

Overview of KATRIN Results on the Neutrino Mass and New Physics Searches
C. Fengler, PoS DISCRETE2022 (2024) 011

A Look at General Neutrino Interactions with KATRIN
C. Fengler, PoS EPS-HEP2023 (2024) 0188

Search for a Light Sterile Neutrino with KATRIN
S. Mohanty, PoS EPS-HEP2023 (2024) 164

Publications 2023

Radiative corrections to neutron and nuclear β-decays: a serious kinematics problem in the literature
F. Glück , Journal of High Energy Physics 2023 - 188, Sep 2023

Search for keV-scale sterile neutrinos with the first KATRIN data
M. Aker et al. (KATRIN Collaboration), Eur. Phys. J. C 83, 763 (2023), Aug 2023

In Situ Tritium Decontamination of the KATRIN Rear Wall Using an Ultraviolet/Ozone Treatment
M. Aker et al, Fusion Science and Technology 2023, Jul 2023

Four Years of Tritium Operation of the KATRIN Experiment at TLK
D. Hillesheimer, Fusion Science and Technology 2023, Jun 2023

Search for Lorentz-invariance violation with the first KATRIN data
M. Aker et al. (KATRIN Collaboration), Phys. Rev. D 107, 082005, Apr 2023

Characterization of the KATRIN cryogenic pumping section
C. Röttele et al, Vacuum Vol 208,111699, Feb 2023

Publications 2022

Operation modes of the KATRIN experiment Tritium Loop System using 83mKr
Alexander Marsteller et al, 2022 JINST 17 P12010. doi:10.1088/1748-0221/17/12/P12010

An active transverse energy filter to differentiate low energy particles with large pitch angles in a strong magnetic field
Gauda, K., Schneidewind, S., Drexlin, G. et al, Eur. Phys. J. C 82, 922 (2022). doi.org/10.1140/epjc/s10052-022-10858-0

Characterization measurements of the TRISTAN multi-pixel silicon drift detector
K. Urban et al 2022 JINST 17 C09020. doi:10.1088/1748-0221/17/09/C09020

Towards the first direct measurement of the dynamic viscosity of gaseous tritium at cryogenic temperatures
Johanna Wydra et al, Vacuum Vol 203, September 2022, 111237. doi:10.1016/j.vacuum.2022.111237

KATRIN: status and prospects for the neutrino mass and beyond
M Aker et al, 2022 J. Phys. G: Nucl. Part. Phys. 49 100501. doi:10.1088/1361-6471/ac834e

A method for determinig the transition energies of 83mKr at the KATRIN experiment
C. Rodenbeck, Eur. Phys. J. C 82, 700 (2022). doi:10.1140/epjc/s10052-022-10667-5

Wideband precision stabilization of the -18.6kV retarding voltage for the KATRIN spectrometers
C. Rodenbeck et al, 2022 JINST 17 P06003. doi:10.1088/1748-0221/17/06/p06003

Monte Carlo simulations of the electron — gas interactions in the KATRIN experiment
J. Kellerer and F. Spanier, 2022 JINST 17 P06029. doi:10.1088/1748-0221/17/06/P06029

KATRIN background due to surface radioimpurities
F. M. Fränkle et al., May 2022, Astroparticle Physics Vol. 138, 102686

Background reduction at the KATRIN experiment by the shifted analysing plane configuration
Lokhov, A., Bieringer, B., Drexlin, G. et al. Eur. Phys. J. C 82, 258 (2022). doi:10.1140/epjc/s10052-022-10220-4

Fast and precise model calculation for KATRIN using a neural network
Karl, C., Eller, P. & Mertens, S. . Eur. Phys. J. C 82, 439 (2022). doi:org/10.1140/epjc/s10052-022-10384-z

Improved eV-scale sterile-neutrino constraints from the second KATRIN measurement campaign
M. Aker et al. (KATRIN Collaboration), Phys. Rev. D 105, 072004. doi:10.1103/PhysRevD.105.072004

Probing the neutrino mass scale with the KATRIN experiment
Diana S. Parno and Kathrin Valerius, Feb 2022, Europhysics News 53/1, 2022, p. 24-27. doi:10.1051/epn/2022107

Direct neutrino-mass measurement with sub-eV sensitivity
M. Aker et al. (katrin-all), Feb 2022, Nature Physics, doi:10.1038/s41567-021-01463-1

New Constraint on the Local Relic Neutrino Background Overdensity with the First KATRIN Data Runs
M. Aker et al. (KATRIN Collaboration), Phys. Rev. Lett. 129, 011806. June 2022. doi:10.1103/PhysRevLett.129.011806

Publications 2021

Accurate Reference Gas Mixtures Containing Tritiated Molecules: Their Production and Raman-Based Analysis
Niemes, S.; Telle, H.H.; Bornschein, B.; Fasselt, L.; Größle, R.; Priester, F.; Schlösser, M.; Sturm, M.; Welte, S.; Zeller, G. , Sep 2021, Sensors. 2021; 21(18):6170 , doi.org/10.3390/s21186170

Conceptual Design Report for "KATRIN with TRISTAN detectors"
September 2021 

Precision measurement of the electron-loss function in tritium and deuterium gas for the KATRIN Experiment
M. Aker et al. (katrin-all), May 2021, Eur. Phys. J. C 81, 579 (2021) doi:10.1140/epjc/s10052-021-09325-z , arXiv:2105.06930

Kilogram scale throughput performance of the KATRIN tritium handling system
M. Sturm, F. Priester, M. Röllig, C. Röttele, D. Hillesheimer, L. Bornschein, B. Bornschein, R. Größle, St. Welte, March 2021, Fusion Engineering and Design 170 (2021) 11, doi:10.1016/j.fusengdes.2021.112507

The Design, Construction, and Commissioning of the KATRIN Experiment
M. Aker et al. (katrin-all), March 2021, JINST 16 T08015, doi:10.1088/1748-0221/16/08/T08015arXiv:2101.04755

Forward Beam Monitor Detector for the KATRIN experiment
A. Beglarian, E. Ellinger, N. Haußmann, K. Helbing, S. Hickford, U. Naumann, H.-W. Ortjohann, M. Steidl, J. Wolf, S. Wüstling et al., March 2022, preprint arXiv:2101.11495 January 2021

Analysis methods for the first KATRIN neutrino-mass measurement
M. Aker et al. (katrin-all), January 2021, Physical Review D, Vol. 104, No. 1, 012005, doi.org/10.1103/ or arXiv:2101.05253

Publications 2020

KATRIN background due to surface radioimpurities
F. M. Fränkle et al., November 2020, arXiv

Time-focusing time-of-flight, a new method to turn a MAC-E-filter into a quasi-differential spectrometer
A. Fulst, A. Lokhov, M. Fedkevych, N. Steinbrink, C. Weinheimer, The European Physical Journal C volume 80, Article number: 956 (2020), doi:10.1140/epjc/s10052-020-08484-9

Neutral tritium gas reduction in the KATRIN differential pumping sections
A. Marsteller et al., 2020, Vacuum, 109979, doi:10.1016/j.vacuum.2020.109979.

Bound on 3+1 active-sterile neutrino mixing from the first four-week science run of KATRIN
M. Aker et al. (katrin-all), November 2020, Phys. Rev. Lett. 126, 091803 (2021), doi: 10.1103/PhysRevLett.126.091803, arXiv,

Suppression of Penning discharges between the KATRIN spectrometers
M. Aker et. al. (katrin-all), September 2020. The European physical journal / C, 80 (9), Article: 821. doi:10.1140/epjc/s10052-020-8278-y

First operation of the KATRIN experiment with tritium
M. Aker et. al (katrin-all), September 2020, Eur. Phys. Journal C 80 (2020) 3,264, doi:10.1140/epjc/s10052-020-7718-z  , arXiv

Quantitative Long-Term Monitoring of the Circulating Gases in the KATRIN Experiment Using Raman Spectroscopy.
M. Aker et. al. (katrin-all), August 2020. Sensors, 20 (17), Art. Nr.: 4827. doi:10.3390/s20174827

Den kosmischen Leichtgewichten auf der Spur – Neutrinomassen‐Experiment KATRIN liefert erste Ergebnisse
Drexlin, G.; Valerius, K.; Weinheimer, C. Physik in unserer Zeit, 51 (3), 116–122. May 2020. doi:10.1002/piuz.202001576 

High-resolution spectroscopy of gaseous 83mKr conversion electrons with the KATRIN experiment
Altenmüller, K et. al (katrin-all), , May 2020, doi: 10.1088/1361-6471/ab8480

Hunting keV sterile neutrinos with KATRIN: Building the first TRISTAN module
Houdy, T. et. al, Journal of physics / Conference series, 1468, Article No.012177. February 2020. doi:10.1088/1742-6596/1468/1/012177

The neutrino mass experiment KATRIN
KATRIN Collaboration; Fraenkle, F.M., Journal of Physics: Conference Series, Volume 1342, XV International Conference on Topics in Astroparticle and Underground Physics 24–28 June 2017, Sudbury, ON, Canada doi: 10.1088/1742-6596/1342/1/012024

Publications 2019

Suppression of Penning discharges between the KATRIN spectrometers
M. Aker et. al (katrin-all), Eur. Phys. Journal C: November 2019 pre-print on arxiv: 1911.09633

Precision tests of nonadiabatic perturbation theory with measurements on the DT molecule
K.-F. Lai et. al, Phys. Rev. Research 1, 033124, November 2019, doi:10.1103/PhysRevResearch.1.033124

An improved upper limit on the neutrino mass from a direct kinematic method by KATRIN
M. Aker et. al (katrin-all),  Phys. Rev. Lett. 123, 221802, November 2019, doi.org/10.1103/PhysRevLett.123.221802 arxiv: 1909.06048
Data of Figure 3a can be downloaded as table here

The neutrino mass experiment KATRIN
Fraenkle; KATRIN Collaboration, Ukrainian journal of physics, 64 (7), 573–576,  September 2019, doi:10.15407/ujpe64.7.573 

Gamma-induced background in the KATRIN main spectrometer
K. Altenmüller et. al (katrin-all), Eur. Phys. Journal C, September 2019, 79:807, doi.org/10.1140/epjc/s10052-019-7320-4

A novel ppm-precise absolute calibration method for precision high-voltage dividers
O. Rest et. al, Metrologia, 56 (4), Art.-Nr.: 045007, July 2019, doi:10.1088/1681-7575/ab2997

A novel detector system for KATRIN to search for keV-scale sterile neutrinos
S. Mertens et. al, Journal of physics / G, 46 (6), Article no: 065203, May 2019, doi:10.1088/1361-6471/ab12fe

β-Decay spectrum, response function and statistical model for neutrino mass measurements with the KATRIN experiment
M. Kleesiek et. al, The European physical journal / C, 79 (3), Article: 204, March 2019, doi:10.1140/epjc/s10052-019-6686-7

Muon-induced background in the KATRIN main spectrometer
K. Altenmüller et. al (katrin-all), Astroparticle Physics, Volume 108, March 2019, Pages 40-49, doi:10.1016/j.astropartphys.2019.01.003

Time-dependent simulation of the flow reduction D2 and T2 in the KATRIN experiment
F. Friedel et. al, Vacuum Vol. 159 (2019) 161-172, doi:10.1016/j.vacuum.2018.10.002

Improved model for transmission probabilities of edge-welded bellows based on TPMC simulations
Marcel Krause and Joachim Wolf, 160 (2019) 402-409, doi:10.1016/j.vacuum.2018.11.049

Tritium beta decay with additional emission of new light bosons
G. Arcadi et. al, Journal of high energy physics, 2019 (1), Article no 206, January 2019, doi:10.1007/JHEP01(2019)206

 

 

Publications 2018

Modelling of gas dynamical properties of the KATRIN tritium source and implications for the neutrino mass measurement
Laura Kuckert, Florian Heizmann, Guido Drexlin, Ferenc Glück, Markus Hötzel, Marco Kleesiek, Felix Sharipov, Kathrin Valerius, Vacuum Vol. 158 (2018) 195-205, doi:10.1016/j.vacuum.2018.09.036

Tritium beta decay with additional emission of new light bosons
Giorgio Arcadi, Julian Heeck, Florian Heizmann, Susanne Mertens, Farinaldo S. Queiroz, Werner Rodejohann, Martin Slezák, Kathrin Valerius , arxiv:1811.035301v1

Reduction of stored-particle background by a magnetic pulse method at the KATRIN experiment
M. Arenz et al. (katrin-all), European Physical Journal C, 78:778, Oct 2018, doi:10.1140/epjc/s10052-018-6244-8 

A novel detector system for KATRIN to search for keV-scale sterile neutrinos
Susanne Mertens, Antonio Alborini, Konrad Altenmüller, Tobias Bode, Luca Bombelli, Tim Brunst, Marco Carminati, David Fink, Carlo Fiorini, Thibaut Houdy, Anton Huber, Marc Korzeczek, Thierry Lasserre, Peter Lechner, Michele Manotti, Ivan Peric, David C. Radford, Daniel Siegmann, Martin Slezák, Kathrin Valerius, Joachim Wolf, Sascha Wüstling, arxiv:1810.06711

The KATRIN Superconducting Magnets: Overview and First Performance Results
M. Arenz et al. (katrin-all), Journal for Instrumentation, 13(8), T08005, Aug 2018, doi:10.1088/1748-0221/13/08/T08005

Gaseous 83m.Kr generator for KATRIN
, , , , and , Journal for Instrumentation, 13(4), P04018--P04018, April 2018,   doi:10.1088/1748-0221/13/04/p04018

Technical design and commissioning of a sensor net for fine-meshed measuring of the magnetic field at the KATRIN spectrometer
J. Letnev, W. Hazenbiller, A. Osipowicz, A. Beglarian, H. Bouquet, G. Drexlin, F. Glück, J. Garbe, H. Hillmer, P. Marte, T. Thümmler and Ch. Weinheimer, Journal of Instrumentation, Volume 13, August 2018, doi:110.1088/1748-0221/13/08/T08010

Impact of a cryogenic baffle system on the suppression of radon-induced background in the KATRIN Pre-Spectrometer
S. Görhardt et al., 2018 JINST 13 T10004 June 2018, doi:10.1088/1748-0221/13/1/T10004

Modelling of gas dynamical properties of the Katrin tritium source and implications for the neutrino mass measurement
L. Kuckert et al., Vacuum Vol. 158 (2018) 195-205,  doi:10.1016/j.vacuum.2018.09.036

β-Decay Spectrum, Response Function and Statistical Model for Neutrino Mass Measurements with the KATRIN Experiment
M. Kleesiek et al., European Physical Journal (tba), June 2018, arxiv:1806.00369

Calibration of high voltages at the ppm level by the difference of 83mKr conversion electron lines at the KATRIN experiment
M. Arenz et al. (katrin-all), European Physical Journal C, 78:368, May 2018, doi:10.1140/epjc/s10052-018-5832-y

First Operation of the Complete Superconducting Magnet Chain KATRIN
W. Gil, 2018. IEEE transactions on applied superconductivity, 28 (4), Article no 2809511, doi:10.1109/TASC.2018.2809511

Properties of 83mKr conversion electrons and their use in the KATRIN experiment
D. Vénos, J. Sentkerestiová, O. Dragoun, M. Slezák, M. Ryšavý, A. Špalek , Journal for Instrumentation, 13, T02012, Feb 2018,   doi:10.1088/1748-0221/13/02/T02012

Quench Detection Performance of the Magnet Safety System for the Inductively Coupled KATRIN Source Magnets
W. Gil, G. Drexlin, T. Höhn, S. Wüstling, 2018. IEEE transactions on applied superconductivity, 28 (3), Article no 2793901, doi:10.1109/TASC.2018.2793901

keV-Scale Sterile Neutrino Sensitivity Estimation with Time-Of-Flight Spectroscopy in KATRIN using Self-Consistent Approximate Monte Carlo
Nicholas M.N. Steinbrink, Jan D. Behrens, Susanne Mertens, Philipp C.-O. Ranitzsch, Christian Weinheimer, Eur. Phys. J. C (2018) 78: 212, doi:10.5445/IR/1000081222

First transmission of electrons and ions through the KATRIN beamline
M. Arenz et al. (katrin-all), JINST 13 P04020 (2018), doi:10.1088/1748-0221/13/04/P04020

Simulation and measurement of the suppression of radon induced background in the KATRIN experiment
J. Wolf and F. Harms, AIP Conference Proceedings 1921, 060001 (2018), doi:10.1063/1.5018997

Publications 2017

Technical design and commissioning of the KATRIN large-volume air coil system
M. Erhard, J. Behrens, S. Bauer, A. Beglarian, R. Berendes, G. Drexlin, F. Glück, R. Gumbsheimer, J. Hergenhan, B. Leiber, S. Mertens, A. Osipowicz, P. Plischke, J. Reich, T. Thümmler, N. Wandkowsky, C. Weinheimer and S. Wüstling
Journal of Instrumentation, Vol. 13, P02003, Feburary 2018
doi:10.1088/1748-0221/13/02/P02003

The Windowless Gaseous Tritium Source (WGTS) of the KATRIN experiment
KATRIN Collaboration; Heizmann, F.; Seitz-Moskaliuk, H.
2017. Journal of physics / Conference Series, 888 (conference 1), 012071/1-3.
doi:10.1088/1742-6596/888/1/012071

Deconvolution of the energy loss function of the KATRIN experiment
V. Hannen, I. Heese, C. Weinheimer, A. Sejersen Riis, K. Valerius
Astroparticle Physics, Volume 89, March 2017, Pages 30 - 38,
doi:10.1016/j.astropartphys.2017.01.010

Background processes in the KATRIN main spectrometer
KATRIN Collaboration; Fraenkle, F. M.
2017. Journal of physics / Conference Series, 888 (conference 1), 012070.
doi:10.1088/1742-6596/888/1/012070

Tritium ion blocking and detection in the KATRIN experiment
KATRIN Collaboration; Klein, M.; Glück, F.
2017. Journal of physics / Conference Series, 888 (conference 1), 012073/1-3.
doi:10.1088/1742-6596/888/1/012073

CARS spectroscopy of the (v = 0 → 1) band in T₂
Schlösser, M.; Zhao, X.; Trivikram, M.; Ubachs, W.; Salumbides, E. J.
2017. Journal of physics / B, 50 (21), 214004.
doi:10.1088/1361-6455/aa8d80

Results of the first Cool-down of the KATRIN Cryogenic Pumping Section
Röttele, C.
2017. Journal of physics / Conference Series, 888, 012228/1-4.
doi:10.1088/1742-6596/888/1/012228

Electric potential and field calculation of charged BEM triangles and rectangles by gaussian cubature
Glück, F.; Hilk, D.
2017. Progress in electromagnetics research / B, 74, 1–21.
doi:10.2528/PIERB17011107

Statistical sensitivity on right-handed currents in presence of eV scale sterile neutrinos with KATRIN
Steinbrink, N. M. N.; Glück, F.; Heizmann, F.; Kleesiek, M.; Valerius, K.; Weinheimer, C.; Hannestad, S.
2017. Journal of cosmology and astroparticle physics, 2017 (6), Art.Nr.: 015.
doi:10.1088/1475-7516/2017/06/015

A pulsed, mono-energetic and angular-selective UV photo-electron source for the commissioning of the KATRIN experiment
Behrens, J.; Ranitzsch, P. C.-O.; Beck, M.; Erhard, M.; Groh, S.; Kraus, M.; Hannen, V.; Ortjohann, H.-W.; Rest, O.; Schlösser, K.; Thümmler, T.; Valerius, K.; Wierman, K.; Wilkerson, J. F.; Winzen, D.; Zacher, M.; Weinheimer, C.
2017. The European physical journal / C, 77 (6), Art. Nr.: 410.
doi:10.1140/epjc/s10052-017-4972-9

The Five Phases to Standard Tritium Operation of KATRIN
KATRIN Collaboration; Bornschein, B.; Besserer, U.; Steidl, M.; Sturm, M.; Valerius, K.; Wendel, J.
2017. Fusion science and technology, 71 (3), 231-235.
doi:10.1080/15361055.2016.1273703

Experimental Performance Test of Key Components of the KATRIN Outer Tritium Loop
Welte, S.; Fanghaenel, E.; Fischer, S.; Kramer, F.; Le, T. L.; Sturm, M.; Tuchscherer, N.
2017. Fusion science and technology, 17 (3), 316-320.
doi:10.1080/15361055.2017.1291233

Status of the Karlsruhe Tritium Neutrino Mass Experiment KATRIN
KATRIN Collaboration; Bornschein, L.; Bornschein, B.; Ebenhoech, S.; Hackenjos, M.; Priester, F.; Roellig, M.; Sturm, M.; Thuemmler, T.
2017. Fusion science and technology, 71 (4), 485-490.
doi:10.1080/15361055.2017.1291241

Kassiopeia : a modern, extensible C++ particle tracking package
Furse, D.; Groh, S.; Trost, N.; Babutzka, M.; Barrett, J. P.; Behrens, J.; Buzinsky, N.; Corona, T.; Enomoto, S.; Erhard, M.; Formaggio, J. A.; Glück, F.; Harms, F.; Heizmann, F.; Hilk, D.; Käfer, W.; Kleesiek, M.; Leiber, B.; Mertens, S.; Oblath, N. S.; Renschler, P.; Schwarz, J.; Slocum, P. L.; Wandkowsky, N.; Wierman, K.; Zacher, M.
2017. New journal of physics, 19 (5), Art. Nr. 053012.
doi:10.1088/1367-2630/aa6950

Electric potential and field calculation of charged bem trianglesand rectangles by gaussian cubature
Gluck, F.; Hilk, D.
2017. Progress in electromagnetics research / B, 74 (1), 1-21

Impact of ADC non-linearities on the sensitivity to sterile keV neutrinos with a KATRIN-like experiment
Dolde, K.; Mertens, S.; Radford, D.; Bode, T.; Huber, A.; Korzeczek, M.; Lasserre, T.; Slezak, M.
2017. Nuclear instruments & methods in physics research / A, 848, 127–136.
doi:10.1016/j.nima.2016.12.015

Commissioning the Magnet Safety System of the Cryogenic Pumping Section of KATRIN
Gil, W.; Hoehn, T.; Petry, K.; Wuestling, S.
2017. IEEE transactions on applied superconductivity, 27 (4), Art. Nr. 0600604.
doi:10.1109/TASC.2016.2640448

 

 

Publications 2016

Quench Detection Method for the Inductively Coupled Superconducting Magnets of KATRIN
W. Gil
IEEE Transactions on Applied Superconductivity, Volume 26, Issue 4, June 2016, doi:10.1109/TASC.2016.2518402

 

Commissioning of the vacuum system of the KATRIN Main Spectrometer
M. Arenz, M. Babutzka, M. Bahr, J.P. Barrett, S. Bauer, M. Beck, A. Beglarian, J. Behrens, T. Bergmann, U. Besserer, J. Blümer, L.I. Bodine, K. Bokeloh, J. Bonn, B. Bornschein, L. Bornschein, S. Büsch, T.H. Burritt, S. Chilingaryan, T.J. Corona, L. De Viveiros, P. J. Doe, O. Dragoun, G. Drexlin, S. Dyba, S. Ebenhöch, K. Eitel, E. Ellinger, S. Enomoto, M. Erhard, D. Eversheim, M. Fedkevych, A. Felden, S. Fischer, J.A. Formaggio, F. Fränkle, D. Furse, M. Ghilea, W. Gil, F. Glück, A. Gonzalez Urena, S. Görhardt, S. Groh, S. Grohmann, R. Grössle, R. Gumbsheimer, M. Hackenjos, V. Hannen, F. Harms, N. Hauÿmann, F. Heizmann, K. Helbing, W. Herz, S. Hickford, D. Hilk, B. Hillen, T. Höhn, B. Holzapfel, M. Hötzel, M.A. Howe, A. Huber, A. Jansen, N. Kernert, L. Kippenbrock, M. Kleesiek, M. Klein, A. Kopmann, A. Kosmider, A. Kovalík, B. Krasch, M. Kraus, H. Krause, M. Krause, L. Kuckert, B. Kuffner, L. La Cascio, O. Lebeda, B. Leiber, J. Letnev, V.M. Lobashev, A. Lokhov, E. Malcherek, M. Mark, E.L. Martin, S. Mertens, S. Mirz, B. Monreal, K. Müller, M. Neuberger, H. Neumann, S. Niemes, M. Noe, N.S. Oblath, A. Off, H.-W. Ortjohann, A. Osipowicz, E. Otten, D.S. Parno, P. Plischke, A.W.P. Poon, M. Prall, F. Priester, P.C.-O. Ranitzsch, J. Reich, O. Rest, R.G.H. Robertson, M. Röllig, S. Rosendahl, S. Rupp, M. Rysavy, K. Schlösser, M. Schlösser, K. Schönung, M. Schrank, J. Schwarz, W. Seiler, H. Seitz-Moskaliuk, J. Sentkerestiova, A. Skasyrskaya, M. Slezak, A. Spalek, M. Steidl, N. Steinbrink, M. Sturm, M. Suesser, H.H. Telle, T. Thümmler, N. Titov, I. Tkachev, N. Trost, A. Unru, K. Valerius, D. Venos, R. Vianden, S. Vöcking, B.L. Wall, N. Wandkowsky, M. Weber, C. Weinheimer, C. Weiss, S. Welte, J. Wendel, K.L. Wierman, J.F. Wilkerson, D. Winzen, J. Wolf, S. Wüstling, M. Zacher, S. Zadoroghny, M. Zboril
Journal of Instrumentation, Volume 11, April 2016, P04011, doi:10.1088/1748-0221/11/04/P04011

 

Anharmonicity of internal atomic oscillation and effective antineutrino mass evaluation from gaseous molecular tritium beta-decay
A. Lokhov, N. Titov
Journal of Physics G: Nuclear and Particle Physics, Volume 43, June 2016, 075102, doi:10.1088/0954-3899/43/7/075102

 

Constrains on the Active and Sterile Neutrino Masses from Beta-Ray Spectra: Past, Present and Future
O. Dragoun, D. Venos
Open Physics Journal, Volume 3, September 2016, Pages 73 - 113, doi:10.2174/1874843001603010073

 

Calculations and TPMC simulations of the reduction of radioactive decays of a noble gas by cryo-panels
G. Drexlin, F. Harms, A. Jansen, M. Krause, F. Müller, K. Schlösser, J. Wolf
Published in Vacuum, article in press, doi:10.1016/j.vacuum.2016.12.013

Publications 2015

Commissioning and detailed results of KATRIN inner loop tritium processing system at Tritium Laboratory Karlsruhe
Florian Priester, Michael Sturm, Beate Bornschein
Vacuum 116 (2015) 42-47
doi:10.1016/j.vacuum.2015.02.030 2)

 

Sensitivity of Next-Generation Tritium Beta-Decay Experiments for keV-Scale Sterile Neutrinos
S. Mertens, T. Lasserre, S. Groh, G. Drexlin, F. Glueck, A. Huber, A. W. P. Poon, M. Steidl, N. Steinbrink, C. Weinheimer
Journal of Cosmology and Astroparticle Physics, Volume 2015, Number 02, February 2015, Pages 020, doi:10.1088/1475-7516/2015/02/020


Focal-plane detector system for the KATRIN experiment
J. F. Amsbaugh, J. Barrett, A. Beglarian, T. Bergmann, H. Bichsel, L. I. Bodine, J. Bonn, N. M. Boyd, T. H. Burritt, Z. Chaoui, S. Chilingaryan, T. J. Corona, P. J. Doe, J. A. Dunmore, S. Enomoto, J. Fischer, J. A. Formaggio, F. M. Fränkle, D. Furse, H. Gemmeke, F. Glück, F. Harms, G. C. Harper, J. Hartmann, M. A. Howe, A. Kaboth, J. Kelsey, M. Knauer, A. Kopmann, M. L. Leber, E. L. Martin, K. J. Middleman, A.W. Myers, N. S. Oblath, D. S. Parno, D. A. Peterson, L. Petzold, D. G. Phillips, P. Renschler, R. G. H. Robertson, J. Schwarz, M. Steidl, D. Tcherniakhovski, T. Thümmler, T. D. Van Wechel, B. A. VanDevender, S. Vöcking, B. L. Wall, K. L. Wierman, J. F. Wilkerson, S. Wüstling
Nuclear Instruments and Methods A, Volume 778, 1 April 2015, Pages 40–60, doi:10.1016/j.nima.2014.12.116 1), 2)

 

A Method to Calculate the Spherical Multipole Expansion of the Electrostatic Charge Distribution on a Triangular Boundary Element
J. Barrett, J. Formaggio, T. Corona
Progress In Electromagnetics Research B, Volume 63, 2015, Pages 123 - 143, doi:10.2528/PIERB15061904

 

Review of direct neutrino mass experiments
O. Dragoun
AIP Conference Proceedings, Volume 1688, October 2015, Pages 02008-1 - 02008-4, doi:10.1063/1.4934897

 

Status of the neutrino mass experiments KATRIN and Project 8
F. Fränkle
Proceedings of Science, EPS-HEP, 2015, PoS(EPS-HEP2015)084

Publications 2014

Gaseous source of 83mKr conversion electrons for the neutrino experiment KATRIN
D. Venos, M. Slezak, O. Dragoun, A. Inoyatov, O. Lebeda, Z. Pulec, J. Sentkerestiova and A. Spalek
2014 JINST 9 P12010, doi:10.1088/1748-0221/9/12/P12010 1), 2)



Penning discharge in the KATRIN pre-spectrometer

F. M. Fränkle, F. Glück, K. Valerius, K. Bokeloh, A. Beglarian, J. Bonn, L. Bornschein, G. Drexlin, F. Habermehl, M. L. Leber, A. Osipowicz, E. W. Otten, M. Steidl, T. Thümmler, C. Weinheimer, J. F. Wilkerson, J. Wolf, S. V. Zadorozhny
Journal of Instrumentation, Volume 9, July 2014, doi:10.1088/1748-0221/9/07/P07028 1)

 

High-voltage monitoring with a solenoid retarding spectrometer at KATRIN experiment
M. Erhard, S. Bauer, A. Beglarian, T. Bergmann, J. Bonn, G. Drexlin, J. Goullon, S. Groh, F. Glück, M. Haag, N. Haußmann, T. Höhn, K. Johnston, M. Kraus, J. Reich, O. Rest, K. Schlösser, M. Schupp, M. Slezák, T. Thümmler, D. Vénos, C. Weinheimer, S. Wüstling, M. Zboril
Journal of Instrumentation, Volume 9, July 2014, doi:10.1088/1748-0221/9/06/P06022 1), 2)

 

Electron optical imaging properties of the KATRIN high field solenoid chain
A. Osipowicz, B. Zipfel
Instruments and Methods in Physics Research A 760 (2014) 68 – 72, http://dx.doi.org/10.1016/j.nima.2014.05.066 1), 2)

 

Dead layer on silicon p-i-n diode charged-particle detectors
B. L. Wall, J. F. Amsbaugh, A. Beglarian, T. Bergmann, H. C. Bichsel, L. I. Bodine, N. M. Boyde, T. H. Burritt, Z. Chaoui, T. J. Corona, P. J. Doe, S. Enomoto, F. Harms, G. C. Harper, M. A. Howe, E. L. Martin, D. S. Parno, D. A. Peterson, L. Petzold, P. Renschler, R. G. H. Robertson, J. Schwarz, M. Steidl, T. D. Van Wechel, B. A. VanDevender, S. Wüstling, K. J. Wiermann, J. F. Wilkerson (2013)
Nuclear Inst. and Methods in Physics Research, A 744C (2014), pp. 73-79
http://dx.doi.org/10.1016/j.nima.2013.12.048 1), 2)

 

A new method for flow measurement in cryogenic systems
Steffen Grohmann
Cryogenics, Volume 60 (2014) 9-18
http://dx.doi.org/10.1016/j.cryogenics.2014.01.004 1), 2)

 

Ellipsometry with polarisation analysis at cryogenic temperatures inside a vacuum chamber
S. Bauer, B. Grees, D. Spitzer, M. Beck, R. Bottesch, H.-W. Ortjohann, B. Ostrick, T. Schäfer, H. H. Telle, A. Wegmann, M. Zbořil, C. Weinheimer
Rev. Sci. Instrum. 84, 123103
http://dx.doi.org/10.1063/1.4838555 1), 2)

 

Publications 2013

 

Electron line shape of the KATRIN monitor spectrometer
M. Slezák, S. Bauer, O. Dragoun, M. Erhard, K. Schlösser, A. Spalek, D. Vénos, M. Zbořil
J. Instrum. 8, T12002 (2013)
doi:10.1088/1748-0221/8/12/T12002 1), 2)

 

Neutrino mass sensitivity by MAC-E-Filter based time-of-flight spectroscopy with the example of KATRIN
N. Steinbrink, V. Hannen, E. L. Martin, R. G. Hamish Robertson, M. Zacher, C. Weinheimer
New J. Phys. 15 113020 (2013), doi:10.1088/1367-2630/15/11/113020 1), 2)

 

Next generation KATRIN high precision voltage devider for voltages up to 65kV
S. Bauer, R. Berendes, F. Hochschulz, H.-W. Ortjohann, S. Rosendahl, T. Thümmler, M. Schmidt, C. Weinheimer
2013 JINST 8 P10026, doi:10.1088/1748-0221/8/10/P10026 1), 2)

 

Neutrino Masses
C. Weinheimer, K. Zuber
Annalen der Physik, 525 (2013) 565-575, 10.1002/andp.201300063, http://arxiv.org/pdf/1307.3518 1), 2)


Electromagnetic design of the large-volume air coil system of the KATRIN experiment
Ferenc Glück, Guido Drexlin, Benjamin Leiber, Susanne Mertens, Alexander Osipowicz, Jan Reich, Nancy Wandkowsky
New Journal of Physics, Volume 15 (2013) 083025
doi:10.1088/1367-2630/15/8/083025 1), 2)

 

Validation of a model for radon-induced background processes in electrostatic spectrometers
N. Wandkowsky, G. Drexlin, F.M. Fränkle, F. Glück, S. Groh, S. Mertens
J. Phys. G: Nucl. Part. Phys. 40 (2013) 085102
doi:10.1088/1748-0221/8/03/P03009
1), 2)

 

Accurate depolarization ratio measurements for all diatomic hydrogen isotopologues
M. Schlösser, S. Rupp, H. Seitz, S. Fischer, B. Bornschein, T. M. James and H. H. Telle

J. Raman Spectrosc., 44 (6) 857-865  (2013)
doi:10.1002/jrs.4283 1), 2)

 

Automated Quantitative Spectroscopic Analysis Combining Background Subtraction, Cosmic Ray Removal, and Peak Fitting
Timothy M. James, Magnus Schlösser, Richard J. Lewis, Sebastian Fischer, Beate Bornschein, Helmut H. Telle
Applied Spectroscopy, Vol. 67, Issue 8, pp. 949-959 (2013)
doi:10.1366/12-06766 1), 2)

 

In-Line Calibration of Raman Systems for Analysis of Gas Mixtures of Hydrogen Isotopologues with Sub-Percent Accuracy
Magnus Schlösser, Hendrik Seitz, Simone Rupp, Philipp Herwig, Catalin Gabriel Alecu, Michael Sturm, Beate Bornschein
Anal. Chem., 2013, 85 (5), pp 2739–2745
doi: 10.1021/ac3032433
1), 2)

 

Current Direct Neutrino Mass Experiments
G. Drexlin, V. Hannen, S. Mertens, and C. Weinheimer
Advances in High Energy Physics Volume 2013 (2013), Article ID 293986
doi:10.1155/2013/293986 1), 2)

 

Evaluation method for Raman depolarization measurements including geometrical effects and polarization aberrations
M. Schlösser, T. M. James, S. Fischer, R. J. Lewis, B. Bornschein and H. H. Telle

J. Raman Spectrosc., 44 (3) 453-462  (2013)
doi:10.1002/jrs.4201 1), 2)

 

Direct Neutrino Mass Measurements
C. Weinheimer
Hyperfine Interactions, doi:10.1007/s10751-013-0808-7 2)

 

Ultra-stable implanted 83Rb/83mKr electron source for the energy scale monitoring in the KATRIN experiment
Z. Boril, S. Bauer, M. Beck, J. Bonn, O. Dragoun, J. Jakubek, K. Johnston, A. Kovalik, E.W. Otten, K. Schlösser, M. Slezak, A. Spalek, T. Thümmler, D. Venos, J. Zemlicka, C. Weinheimer
Journal of Instrumentation, Volume 8 (March 2013), doi:10.1088/1748-0221/8/03/P03009 1), 2)

 

Limit on sterile neutrino contribution from the Mainz Neutrino Mass Experiment
C. Kraus, A. Singer, K. Valerius and C. Weinheimer
Eur. Phys. J. C 73 (2013)
2323, doi:10.1140/epjc/s10052-013-2323-z 1), 2)

 

Accurate Calibration of the Laser Raman System for the Karlsruhe Tritium Neutrino Experiment
M. Schlösser, S. Rupp, H. Seitz, S. Fischer, B. Bornschein, T. M. James and H. H. Telle
J. of Molecular Structure, Journal of Molecular Structure, Volume 1044, 24 (2013), 61-66
doi:10.1016/j.molstruc.2012.11.022
1), 2)

 

83mKr, a potentially powerful PAC probe
M. Arenz, R. Vianden
Hyperfine Interactions, doi:10.1007/s10751-012-0723-3 2)

 

Publications 2012

A mobile magnetic sensor unit for the KATRIN main spectrometer
A. Osipowicz, W. Seller, J. Letnev, P. Marte, A. Müller, A. Spengler, A. Unru
Journal of Instrumentation, Vol. 7,  (2012),
doi:10.1088/1748-0221/7/06/T06002 or  arXiv: 1207.3926 [physics.ins-det] 1), 2)

 

Direct neutrino mass determination: Status and prospects
V. M. Hannen
Journal of Physics: Conference Series, Volume 375, Part 4 (2012), doi:10.1088/1742-6596/375/4/042004 2)

 

The thermal behaviour of the tritium source in KATRIN
S. Grohmann, T. Bode, M. Hötzel, H. Schön, M. Süßer, T. Wahl
Cryogenics, in press  (2012),
doi:10.1016/j.cryogenics.2013.01.001 1), 2)

 

Activity monitoring of a gaseous tritium source by beta induced X-ray spectrometry
M. Röllig, F. Priester, M. Babutzka, J. Bonn, B. Bornschein,  G. Drexlin, S.Ebenhöch, E.W. Otten, M. Steidl, M. Sturm
Fusion Engineerig and Design, in press  (2012),
doi:10.1016/j.fusengdes.2012.11.001 1), 2)

 

TriTop - A compatibility experiment with turbomolecular pumps under tritiumatmospher
Florian Priester and Beate Bornschein
Vacuum, Available, online 23 September 2012, ISSN 0042-207x, doi:10.1016/j.vacuum.2012.09.006 1)

 

Monitoring of the operating parameters of the KATRIN Windowless Gaseous Tritium Source
M. Babutzka, M. Bahr, J. Bonn, B. Bornschein, A. Dieter, G. Drexlin, K. Eitel, S. Fischer, F. Glück, S. Grohmann, M. Hötzel, T. M. James, W. Käfer, M. Leber, B. Monreal, F. Priester, M. Röllig, M. Schlösser, U. Schmitt, F. Sharipov, M. Steidl, M. Sturm, H. H. Telle, N. Titov
New Journal of Physics 14 (2012) 103046 (29pp)
doi:10.1088/1367-2630/14/10/103046 1), 2)

 

The KATRIN Pre-Spectrometer at reduced Filter Energy
Matthias Prall, P. Renschler, F. Glück, A. Beglarian, H. Bichsel, L. Bornschein, Z. Chaoui, G. Drexlin, F. Fränkle, S. Görhardt, S. Mertens, M. Steidl, Th. Thümmler, S. Wüstling, Ch. Weinheimer, S. Zadorozhny
New Journal of Physics, 14 (2012) 073054, doi:10.1088/1367-2630/14/7/073054 or arXiv:1203.2444v1 1), 2)

 

Stochastic Heating by ECR as a Novel Means of Background Reduction in the KATRIN Spectrometers
G. Drexlin, F. M. Fränkle, D. Furse, F. Glück, S. Görhardt, O. Krömer, B. Leiber, S. Mertens, N. Wandkowsky, S. Wüstling
Journal of Instrumentation, (2012) JINST 7 P08025
doi:10.1088/1748-0221/7/08/P08025 1), 2)

 

Background due to stored electrons following nuclear decays at the KATRIN experiment and its impact on the neutrino mass sensitivity
S. Mertens, G. Drexlin, D. Furse, F. Glück, S. Görhardt, M. Hötzel, W. Käfer, B. Leiber, N. Wandkowsky, J. Wolf
Astroparticle Physics (2012), doi:10.1016/j.astropartphys.2012.10.005 1), 2)

 

Solving for micro- and macro-scale electrostatic configurations using the Robin Hood algorithm
J. A. Formaggio, P. Lazic, T. J. Corona, H. Stefancic, H. Abraham, F. Glück 
Progress in Electromagnetics Research B, Volume 39, pp. 1-37, http://www.jpier.org/pierb/pier.php?paper=11112106 2)

 

Status of the Magnets of the Two Tritium Pumping Sections for KATRIN
W. Gil, J. Bonn, O. Dormicchi, R. Gehring, J. Kleinfeller, A. Kosmider, S. Putselyk, H.-P. Schön, M. Tassisto 
IEEE TRANS. ON APPL. SUPERCOND., VOL. 22, NO. 3, JUNE 2012, doi:10.1109/TASC.2011.2175353 1), 2)

 

Precise energy of the 9.4 keV gamma transition observed in the 83Rb decay
M. Slezák, D. Venos, O. Lebeda, T. Trojek
European Physical Journal A(2012) 48: 12, doi: 10.1140/epja/i2012-12012-y 1), 2)

 

Performance of a TiN-coated monolithic silicon pin-diode array under mechanical stress
B. A. VanDevender, L. I. Bodine, A. W. Myers, J. F. Amsbaugh, M. A. Howe, M. L. Leber, R. G. H. Robertson, K. Tolich, T. D. Van Wechel, B. L. Wall
Nuclear Inst. and Methods in Physics Research, A (2012), pp.46-50, doi: 10.1016/j.nima.2012.01.033 1), 2)

 

Status of the KATRIN experiment
Sebastian Fischer
Vacuum 86 (2011) 361 - 369, http://www.researchgate.net/


Publications 2011

The KATRIN sensitivity to the neutrino mass and to right-handed currents in beta decay
J. Bonn, K. Eitel, F. Glück, D. Sevilla-Sanchez, N. Titov, K. Blaum
Physics Letters B 703, 310 (2011), doi:10.1016/j.physletb.2011.08.005 1), 2)

 

Resolving the Reactor Neutrino Anomaly with the KATRIN Neutrino Experiment
J. A. Formaggio, J. Barrett
Physics Letters B 706 (2011), pp. 68-71, http://dx.doi.org/10.1016/j.physletb.2011.10.069 1), 2)

 

KATRIN: an experiment to determine the neutrino mass
F. M. Fränkle
SLAC Electronic Proceedings repository, http://iopscience.iop.org/1742-6596/120/5/052028 2)

 

Between  Fusion and cosmology  – The future of the Tritium Laboratory Karlsruhe
B. Bornschein
Fusion Sci. Technol. 60 3, 1088 (2011), http://www.new.ans.org/pubs/journals/fst/a_12604 1), 2)

 

Measurement of the gas-flow reduction factor of the KATRIN DPS2-F differential pumping section  
S. Lukic, B. Bornschein, L. Bornschein, G. Drexlin, A. Kosmider, K. Schloesser, A. Windberger
Vacuum 86 (2012) 1126-1133, doi:10.1016/j.vacuum.2011.10.017 1), 2)

 

Monitoring of tritium purity during long-term circulation in the KATRIN test experiment LOOPINO using Laser Raman Spectroscopy
S. Fischer, M. Sturm, M. Schlösser, B. Bornschein, G. Drexlin, F. Priester, R. J. Lewis, H. H. Telle
Fusion Sci. Technol. 60 3, 925-930 (2011), http://www.new.ans.org/pubs/journals/fst/a_12567 1), 2)

 

Design implications for Laser Raman measurement systems for tritium sample analysis, accountancy and process-control applications
M. Schlösser, S. Fischer, M. Sturm, B. Bornschein, R. J. Lewis, H. H. Telle
Fusion Sci. Technol. 60 3, 976-981 (2011), http://www.new.ans.org/pubs/journals/fst/a_12579 1), 2)

 

Radon induced background processes in the KATRIN pre-spectrometer
F. M. Fränkle, L. Bornschein, G. Drexlin, F. Glück, S. Görhardt, W. Käfer, S. Mertens, N. Wandkowsky,
J. Wolf
Astroparticle Physics 35, Issue 3, October 2011, Pages 128-134, doi:10.1016/j.astropartphys.2011.06.009 1), 2)

 

Precise temperature measurement at 30 K in the KATRIN source cryostat
S. Grohmann, T. Bode, H. Schön, M. Süßer
Cryogenics 51, issue 8, August 2011, pages 438-445, doi:10.1016/j.cryogenics.2011.05.001 1), 2)

 

The Katrin experiment and the pre-spectrometer at reduced retarding potential
M. Prall
Progress in Particle and Nuclear Physics,Volume 66, Issue 2, April 2011, Pages 418-423, doi:10.1016/j.ppnp.2011.01.044 1), 2)

 

Investigation of Turbo-Molecular Pumps In Strong Magnetic Fields
J. Wolf, B. Bornschein, G. Drexlin, R. Gehring, R. Größle, S. Horn, N. Kernert, S. Riegel, R. Neeb, A. Wagner
Vacuum 86 (2011) 361 - 369, doi:10.1016/j.vacuum.2011.07.063 1), 2)

 

Comment on "Using cold atoms to measure neutrino mass"
E. W. Otten
New Journal of Physics, 13 (2011) 078001, doi:10.1088/1367-26.30/13/7/078001 1), 2)

 

Axisymmetric magnetic field calculation with zonal harmonic expansion
F. Glück
Progress In Electromagnetics Research B, Vol. 32, 351-388, 2011
2)

 

Axisymmetric electric field calculation with zonal harmonic expansion
F. Glück
Progress In Electromagnetics Research B, Vol. 32, 351-388, 2011
2)

 

Feasibility of photoelectron sources with sharp lines of stable energy between 20 and 80 keV
O. Dragoun, A. Špalek, J. Kašpar, J. Bonn, A. Kovalík, E.W. Otten, D. Vénos, Ch. Weinheimer,
Applied Radiation and Isotopes, Volume 69, Issue 4 (April 2011), doi:10.1016/j.apradiso.2010.12.015 1)

 

Prototype of an angular-selective photoelectron calibration source for the KATRIN experiment
K. Valerius, H. Hein, H. Baumeister, M. Beck, K. Bokeloh, J. Bonn, F. Glück, H.-W. Ortjohann, B. Ostrick, M. Zbořil, Ch. Weinheimer, Journal of Instrumentation, Vol. 6 (Jan 2011), K Valerius et al 2011 JINST 6 P01002
doi: 10.1088/1748-0221/6/01/P01002 1), 2)

 

Ion source for tests of ion behavior in the KATRIN beam line
S. Lukic, B. Bornschein, G. Drexlin, F. Glück, O. Kazachenko, M. Schöppner, Ch. Weinheimer, M. C. R. Zoll
Rev. Sci. Instrum. 82 (2011), issue 1 (Jan 2011) doi: 10.1063/1.3504372 link.aip.org/link/?RSI/82/013303 1)

 

Publications 2010

The Cryogenic Pumping Section of the KATRIN Experiment 
Woosik Gil, Jochen Bonn, Beate Bornschein, Rainer Gehring, Oleg Kazachenko, Jonny Kleinfeller and Sergiy Putselyk
IEEE Transactions on applied superconductivity, Vol. 20, No. 3, June 2010, 316, doi:10.1109/TASC.2009.2038581 1), 2)

 

Results from a 64-pixel PIN-diode detector system for low-energy beta-electrons
Sascha Wuestling, F. Fraenkle, F. Habermehl, P. Renschler and M. Steidl
NIM A 624, issue 2, 11 December 2010, pages 295-302, doi:10.1016/j.nima.2010.03.120 1), 2)

 

The KATRIN neutrino mass experiment
J. Wolf for the KATRIN collaboration,
Volume 623, Issue 1, 1 November 2010, Pages 442-444, doi:10.1016/j.nima.2010.03.030 1), 2)
1st International Conference on Technology and Instrumentation in Particle Physics

 

Effect of a sweeping conductive wire on electrons stored in a Penning-like trap between the KATRIN spectrometers
M. Beck, K. Valerius, J. Bonn, K. Essig, F. Glück, H. -W. Ortjohann, B. Ostrick, E. W. Otten, Th. Thümmler, M. Zbořil, and C. Weinheimer, European Phys. Journal A (2010) vol. 44 no. 3 pp. 499-511 (June 2010) 1), 2)

 

The wire electrode system for the KATRIN main spectrometer
K. Valerius, Progress in Particle and Nuclear Physics 64, issue 2, April 2010, Pages 291-293
doi:10.1016/j.ppnp.2009.12.032 1), 2)
Neutrinos in Cosmology, in Astro, Particle and Nuclear Physics, Int. Workshop on Nuclear Physics, 31st course

 

An angular resolved pulsed UV LED photoelectron source for KATRIN
K. Hugenberg
Progress in Particle and Nuclear Physics, Volume 64, Issue 2, April 2010, Pages 288-290 1), 2)

 

Searching the absolute ν mass in tritium β-decay: interplay betw. nuclear, atomic and molecular physics
E. Otten
Hyperfine Interactions: Volume 196, Issue 1 (2010), Page 3 - 23 (Feb 9, 2010)

 

Monitoring of all Hydrogen Isotopologues at Tritium Laboratory Karlsruhe using Raman Spectroscopy
M. Sturm, M. Schlösser, R. J. Lewis, B. Bornschein, G. Drexlin, H. H. Telle
Laser Physics, 2010, Vol. 20, No. 2, p p. 493–507 (Feb 2010) 1), 2)
DOI 10.1134/S1054660X10030163

 

Publications 2009

Precision high voltage divider for the KATRIN experiment
Th. Thuemmler, R. Marx, Ch. Weinheimer
Th. Thümmler et al 2009 New J. Phys. 11 103007 (October 2009) 1), 2)

 

Stability analyses of the beam tube cooling system in the KATRIN source cryostat
Steffen Grohmann, Cryogenics, Vol ume 49, Issue 8, August 2009, Pages 413-420 1), 2)

 

A UV LED-based fast-pulsed photoelectron source for time-of-flight studies
K. Valerius, M. Beck , H. Arlinghaus, J. Bonn, V. M. Hannen, H. Hein, B. Ostrick, S. Streubel, Ch. Weinheimer,
M. Zbořil, (June 2009), New J. Phys. 11 063018, doi: 10.1088/1367-2630/11/6/063018 1), 2)

 

A broad-band FT-ICR Penning trap system for KATRIN
M. Ubieto-Díaz, D. Rodríguez, S. Lukic, Sz. Nagya, S. Stahl, K. Blaum
International Journal of Mass Spectrometry 288 (2009) 1–5 1), 2)

 

Direct determination of Neutrino Mass from 3H beta-spectrum
C. Weinheimer
Proceedings of the International School of Physics "Enrico FermiCourse CLXX Measurements of Neutrino
Mass" edited by F. Ferroni, F. Vissani and C. Brofferio 2009, arXiv:0912.1619v1 [hep-ex] 2)

 

Contactless 2-dimensional laser sensor for 3-dimensional wire position and tension measurements
Matthias Prall, V. Hannen, R. Joehren, H.W. Ortjohann, M. Reinhardt, C. Weinheimer,
IEEE Transactions on Nuclear Science, Vol. 57, Issue 2 (2009) p. 787-792, e-Print: arXiv:0907.5490

 

Size Matters: The Vacuum System of the KATRIN Neutrino Experiment
J. Wolf
Journal of the Vacuum Society of Japan, Vol. 52 (2009) , No. 5 (June 23, 2009) 2)

 

A UV LED-based fast-pulsed photoelectron source for time-of-flight studies
K. Valerius, M. Beck, H. Arlinghaus, J. Bonn, V.M.Hannen, H.Hein, B.Ostrick, S. Streubel (Jun 2009)
New J. Phys. 11 (2009) 063018, e-Print: arXiv:0902.2305 1), 2)

 

Long term stability of the energy of conversion electrons emitted from solid 83Rb/83mKr source
D. Venos, J. Kaspar, M. Zboril, O. Dragoun, J. Bonn, A. Kovalik, O. Lebeda, M. Rysavy, K.Schloesser,
A. Spalek, C. Weinheimer (Feb 2009), e-Print: arXiv:0902.0291

 

Publications 2008

Production of Rb-83 for the KATRIN experiment
M. Rasulbaev, K. Maier, R. Vianden, B. Ostrick, T. Thuemmler, C. Weinheimer 
Appl. Rad. Isotopes, 66 (12): 1838-1843 (2008) http://dx.doi.org/10.1016/j.apradiso.2008.04.020 1)

 

The Windowless Gaseous Tritium Source for the KATRIN Experiment
Rainer Gehring, Beate Bornschein, Woo-Sik Gil, Steffen Grohmann, and Mathias Noe
IEE Trans. on Appl. Supercond., Vol. 18, No. 2, June 2008, 1459,  http://dx.doi.org/10.1109/TASC.2008.920625 1), 2)

 

Cryogenic design of the KATRIN source cryostat
S. Grohmann, J. Bonn, B. Bornschein, R. Gehring, W. Gil, O. Kazachenko, H. Neumann, M. Noe and C. Weiss
AIP Conf. Proc. 985, 1277 (2008); doi: 10.1063/1.2908483

 

Test particle Monte Carlo study of the cryogenic pumping system of the Karlsruhe tritium neutrino experiment
X. Luo and Ch. Day,
J. Vac. Sci. Technol. A, 26(5) 1319 (2008), doi:10.1116/1.2956628 1), 2)

 

Evaluation of low-count spectra without binning
M.Rysavy and J.Kaspar ,
Nucl. Instr. Meth. A594 (2008) 97-101, doi:10.1016/j.nima.2008.03.101 1), 2)

 

Determination of neutrino mass from  tritium beta decay
B. Bornschein
Fusion science and technology, Vol. 54, 1 (2008), 59
http://www.new.ans.org/pubs/journals/fst/a_1765 1), 2)

 

Tritium processing loop for KATRIN experiment
O.Kazachenkov, B. Bornschein, N. Kernert, L. Doerr, M. Glugla, V. Weber, D. Stern,
Fusion science and technology, Vol. 54, 1 (2008), 67-70
http://www.new.ans.org/pubs/journals/fst/a_1766 1), 2)

 

Dynamic Raman Spectroscopy of hydrogen isotopomer mixtures in-line at TILO
R.J. Lewis, H.H. Telle, B. Bornschein, O. Kazachenko, N. Kernert and M. Sturm
Laser Phys. Lett 5, No. 7, 522–531(2008), doi:10.1002/lapl.200810026 1), 2)

 

TRAP - a cryo-pump for pumping tritium on pre-condensed argon
O. Kazachenko et al., Nuclear Instruments and Methods in Physics Research A 587 (2008) 136
doi:10.1016/j.nima.2007.12.024 1), 2)

 

First Tritium Results of the KATRIN Test Experiment TRAP
F. Eichelhardt, B. Bornschein, L. Bornschein, O. Kazachenko, N. Kernert, M. Sturm
Fusion Science and Technology 54 (2008) 615, http://www.new.ans.org/pubs/journals/fst/a_1890 1), 2)

 

Neutrino mass limit from tritium beta decay
E.W. Otten and C.Weinheimer,
Rep. Prog. Phys. 71 (2008) 086201 (36pp), doi:10.1088/0034-4885/71/8/086201 1), 2)

 

Publications 2007

Forecasting neutrino masses from combining KATRIN and the CMB observations: Frequentist and Bayesian analyses
Ole Host, Ofer Lahav, Filipe B. Abdalla, Klaus Eitel
Phys. Rev. D 76, 113005 (2007) [8 pages] , arXiv:0709.1317v1 [hep-ph], (Dec 2007) 1), 2)

 

First Tritium Pumping Results by a Cryopump with a pre-condensed Argon Layer
F. Eichelhardt, B. Bornschein, L. Bornschein, O. Kazachenko, N. Kernert and M. Sturm
Rarefied Gas Dynamics: 25th International Symposium, edited by M.S.Ivanov and A.K.Rebrov. Novosibirsk 2007


Neutrino mass from beta decay
C. Weinheimer,
Nucl. Phys. B Proc. Suppl. 168 (2007) 5, doi:10.1016/j.nuclphysbps.2007.02.001 2)

 

Exact relativistic beta decay endpoint spectrum
S. S. Masood, S. Nasri, J. Schechter, M. A. Tortola, J. W. F. Valle and C. Weinheimer
Phys. Rev. C 76 (2007) 045501, [arXiv:0706.0897] 1), 2)

 

KATRIN NEG pumping concept investigation
X. Luo, L. Bornschein, Ch. Day, J. Wolf,
Vacuum 81 (2007) 777-781, doi:10.1016/j.vacuum.2005.11.053 1), 2)

 

Elektrostatische Spektrometer und Detektoren für KATRIN
R. Gumbsheimer, M. Steidl, S. Wüstling, C. Day, J. Wolf, L. Bornschein, J. Bonn, Ch. Weinheimer
Nachrichten-Forschungszentrum Karlsruhe 39(2007) S.75-80

 

KATRIN - ein Schlüsselexperiment der Astroteilchenphysik
G. Drexlin and C. Weinheimer,
Nachrichten - Forschungszentrum Karlsruhe, 39(2007) S.63-68

 

Die KATRIN-Tritiumquelle im Tritiumlabor Karlsruhe (TLK)
B. Bornschein, L. Dörr, M. Glugla, O. Kazachenko
Nachrichten - Forschungszentrum Karlsruhe, 39(2007) S.69-74

 

The Karlsruhe Tritium Neutrino Mass Experiment KATRIN
J. Bonn, Proceedings of the Carpatian Summer School of Physics, Sinaia Romania (Aug 2007),
Editors Livius Trache and Sabib Stoica, page 404 ff http://cdsweb.cern.ch/record/1100513?ln=cs 2)

 

Publications 2006

The development of the KATRIN magnet system
M. Noe et al., Journal of Physics: Conference Series, 43 (2006) p.710-713 2)

 

A large, 64-pixel PIN-diode detector for low-energy beta-electrons
Sascha Wüstling, Torsten Armbrust, Markus Steidl and Sergeij Zadorozhny
NIM A 568, issue 1, 30 November 2006, pages 382-387, doi:10.1016/j.nima.2006.06.029 1), 2)

 

Monte Carlo simulation of gas flow through the KATRIN DPS2-F differential pumping system
X. Luo et al., Vacuum, 80(2006) p.864-869, doi:10.1016/j.vacuum.2005.11.044 1), 2)

 

Optimization calculations for the KATRIN magnet system
R. Gehring, A. Osipowicz, C.Weinheimer,
IEEE Transactions on Applied Superconductivity, 16(2006) p.1859-1861 1), 2)

 

Neutrinos auf der Waage von KATRIN
G. Drexlin, Nachrichten - Forschungszentrum Karlsruhe, 38(2006) p.103-105

 

Electromagnetic design and inner electrode for the KATRIN main spectrometer
K. Valerius and the KATRIN collaboration, Progress in Particle and Nuclear Physics 57,
issue 1, July 2006, Pages 58-60, doi:10.1016/j.ppnp.2005.11.011 1), 2)
Int.Workshop of Nuclear Physics 27th course- Neutrinos in Cosmology, in Astro, Particle and Nuclear Physics

 

The closed tritium cycle of KATRIN
B. Bornschein for the KATRIN collaboration, Progress in Particle and Nuclear Physics,
Volume 57, Issue 1, July 2006, Pages 38-48, doi:10.1016/j.ppnp.2005.12.004 1), 2)
Int. Workshop of Nuclear Physics 27th course - Neutrinos in Cosmology, in Astro, Particle and Nuclear Physics

 

Direct neutrino mass measurements
C. Weinheimer, Int. J. Mod. Phys. A21, Nos. (2006) p.1875-1886 1), 2)

 

Outgassing measurements with a prototype for a large UHV spectrometer
J. Wolf et al., AIP Conference Proceedings #837: Hydrogen in matter (2006), p. 200-209 2)

 

Precise energy of the weak 32-keV gamma transition observed in 83mKr decay
D. Vénos, O. Dragoun, A. Špalek, M. Vobecký
Nuclear Instruments and Methods in Physics Research Vol. A 560 (2006), p. 352-359 1), 2)

 

Status of direct neutrino mass measurements and the KATRIN project
K. Valerius et al., Proceedings of Science, PoS(HEP2005)166 (2006)

 

The Q-value of tritium β-decay and the neutrino mass
E.W. Otten, J. Bonn and Ch. Weinheimer
International Journal of Mass Spectrometry, Volume 251, Issues 2-3 , 1 April 2006, Pages 173-178 1), 2)

 

Electromagnetic design and inner electrode for the KATRIN main spectrometer
K. Valerius, , Progress in Particle and Nuclear Physics 57 (2006), p. 58-60, doi:10.1016/j.ppnp.2005.11.011 1), 2)

 

Measurements with the KATRIN pre-spectrometer
L. Bornschein, Progress in Particle and Nuclear Physics 57 (2006), p. 49-57, doi:10.1016/j.ppnp.2005.12.011 1), 2)

 

Neutrino mass from triton decay
C. Weinheimer, Progress in Particle and Nuclear Physics 57 (2006), p. 22-37, doi:10.1016/j.ppnp.2006.01.001 1), 2)

 

Publications 2005

Direct Neutrino Mass Measurements
C. Weinheimer, Lepton Photon 2005, 6. Juni-7. Juli, Uppsala, Schweden,
Proceedings, published in 2006, pages 298-309,World Scientific 1)

 

Direct determination of the neutrino mass
C. Weinheimer, Comptes Rendus Physique 6 (2005) 768-777, doi:10.1016/j.crhy.2005.07.005 1), 2)

 

Effects of Plasma Phenomena on Neutrino Mass Measurements Process Using a Gaseous Tritium Beta Source
Anatoly F. Nastoyashchii, Nikita A. Titov, Igor N. Morozov, Ferenc Glück, Ernst W. Otten
Fusion Science and Technology (ANS), Vol. 48 (2005) 743-746 1), 2)

 

83mKr radioactive source based on 83Rb trapped in cation-exchange paper or in zeolite
D. Vénos, A. Špalek, O. Lebeda, M. Fišer, Applied Radiation and Isotopes Vol. 63 (2005) p. 323-327 1), 2)

 

The KATRIN experiment - a direct measurement of the electron antineutrino mass in the sub-eV region
L. Bornschein for the KATRIN collaboration
Nuclear Physics A 752, 18 April 2005, Pages 14-23, doi:10.1016/j.nuclphysa.2005.02.105 1), 2)
Proceedings of the 22nd International Nuclear Physics Conference (Part 2)

 

Measuring Neutrino Properties with Tritium
C. Weinheimer, Fusion Science and Technology, 48, Number 1 (2005) 723-730 1)

 

KATRIN: Direct Measurement of a sub-eV Neutrino Mass
G. Drexlin et al, Nucl. Phys. B (Proc. Suppl.) 145 (2005) 263-267 1), 2)

 

Status of the neutrino mass experiment KATRIN
B. Flatt et al., Nuclear Physics B (Proc. Suppl.) 143, 575 (2005), doi:10.1016/j.nuclphysbps.2005.01.240 1), 2)

 

Direct Neutrino Mass Searches
G. Drexlin, Nucl.Phys. B (Proc. Suppl.) 138 (2005) 282, doi:10.1016/j.nuclphysbps.2004.11.064 1), 2)

 

Publications 2004 and before

Increased accuracy of the binding energy of K- and L-subshell electrons in krypton from re-analysis of experimental data: importance for determination of the neutrino mass
O. Dragoun, A. Špalek, F. J. Wuilleumier, Czechoslovak Journal of Physics Vol. 54 (2004) p. 833-839 1), 2)

 

Effect of energy scale imperfections on results of neutrino mass measurements from β-decay
J. Kašpar, M. Ryšavý, A. Špalek, O. Dragoun
Nuclear Instruments and Methods in Physics Research Vol. A 527 (2004) p. 423-431 1), 2)

 

KATRIN Design Report 2004 (245 pages)
Report by the KATRIN Collaboration (pdf, 9.6 MB), FZKA7090
NPI ASCR Rez EXP-01/2005,
MS-KP-0501

 

Design of the KATRIN pre-spectrometer
B. Flatt, J. Wolf, Nuclear Physics B - Proceedings Supplements 118, April 2003, Page 483
doi:10.1016/S0920-5632(03)01373-2 1), 2)
Proceedings of the XXth International Conference on Neutrino Physics and Astrophysics

 

KATRIN, a next generation tritium β decay experiment in search for the absolute neutrino mass scale
Ch. Weinheimer for the KATRIN collaboration, Progress in Particle and Nuclear Physics,
Volume 48, Issue 1, 2002, Pages 141-150, doi:10.1016/S0146-6410(02)00120-5 1), 2)

 

Addendum to the Letter of Intent (May 2002)
Download as pdf (1,36 MB)

 

Letter of Intent (2001) (51 pages)
KATRIN: A next generation tritium beta decay experiment with sub-eV sensitivity for the electron neutrino mass
Los Alamos e-print archive hep-ex/0109033, September 21st, 2001
or download as pdf (1038 kB) or ps (2890 kB) or ps.gz (844 kB)

 

 

___________________________

1) cited in ISI Web of knowledge

2) cited in Scopus Database