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Abstract

The neutrino is the second most abundant known particle in the universe, after the photon,

and the knowledge of its absolute mass scale has a large impact on cosmological models as

well as the nature of particle masses in general. While neutrino oscillation experiments have

proven that neutrinos are not massless, they are only sensitive to the relative differences

of individual mass eigenstates. A possibility to measure the absolute neutrino mass scale

independently of the neutrino mass model is by studying the shape of the β -decay spectrum

close to its endpoint. The KArlsruhe TRItium Neutrino (KATRIN) experiment is designed

to determine the effective electron neutrino mass using this method with a sensitivity of

200 meV (90 % CL).

First KATRIN tritium β -decay data was taken in May and June 2018. The goal of these

measurements was to test analysis tools and probe the β -spectrum for systematic effects. In

this thesis the first tritium data of KATRIN is analysed and various strategies for data and

systematics handling are compared. For this purpose a new analysis tool Fitrium (Fit Tritium)

was developed and applied to the data. Its main feature is that it is optimized for high-

performance and the utilization of the analysis strategies discussed in this thesis. The analysis

of this first measurement campaign with Fitrium demonstrated a very good agreement of the

model predictions and the experimental spectrum. Most importantly, it could be shown that

the effective endpoint of the β -spectrum is stable over time and distributed homogeneously

over the individual pixels.

The focus of this thesis was to perform a detailed comparison of different techniques to com-

bine data sets of several runs and detector pixels and to test various strategies of how to

include systematic uncertainties. To combine the 148 detector pixels, three different tech-

niques, namely the uniform, the single-pixel and the multi-pixel fit, were applied and the fit

results were compared. All three agree within uncertainty for the sensitivity of first tritium.

Two different options, run appending and run stacking, were tested for treating the data of

multiple runs. The advantage of run appending is that it makes no approximation while run

stacking eases data handling. For the statistics available in first tritium, no major difference

in the fit results was found. In order to take systematic effects into account, the nuisance

parameter and the Monte Carlo propagation, as well as the covariance matrix method was

investigated. A combination of these techniques was successfully applied to a set of 27 runs

corresponding to about three days of tritium data giving a comprehensive overview of the

analysis results of this first measurement phase. The analysis code and strategies developed

in this thesis will be of key importance for the forthcoming neutrino mass measurement

starting in March 2019.
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Chapter 1

Brief History of the Neutrino

The neutrino was postulated in 1930 by Wolfgang Pauli to describe the continuous electron

energy spectrum observed in β -decay experiments. Over 20 years later, in 1956, it was

experimentally confirmed by the Cowan-Reines neutrino experiment [1].

Since its discovery the understanding of the neutrino has increased tremendously and it is

now well embedded in the Standard Model of particle physics. Neutrinos participate in the

weak interaction, one of the three fundamental forces described by the Standard Model and

the one responsible for β -decay. In correspondence with the charged leptons, the electron,

the muon and tau, neutrinos come in three different flavours.

Various experiments have proven that it is possible for neutrinos to change their flavour

by neutrino oscillations [2–4]. Neutrino oscillations arise from the fact that neutrino mass

eigenstates are not equal to neutrino flavour eigenstates. Each flavour is composed of the

three different mass states with a unique mixing described by the Pontecorvo-Maki-Nakagawa-

Sakata (PMNS) matrix (1.1) [5, 6]. Differences in mass lead to a different propagation of

the mass state components through space.





νe

νµ
ντ



 =





Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3









ν1

ν2

ν3



 (1.1)

The probability to oscillate from one state i into another state j

Pi→ j∝ sin2

�

∆m2
i j

L

4E

�

(1.2)

shows that neutrino oscillation experiments are only sensitive to the difference of the squared

masses of two different mass states ∆m2
i j
= m2

i
−m2

j
. The existence of neutrino oscillations
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Chapter 1 Brief History of the Neutrino

hence proves that neutrinos have mass, however the absolute mass scale of the neutrinos

cannot be deduced from oscillation experiments.

Three methods to determine the absolute neutrino mass scale are currently being explored:

cosmological investigation of large scale structure (LSS) formation and evolution [7], the

search for neutrinoless double β -decay (0νββ) [8] and the analysis of the shape of the

energy spectrum of electrons emitted by β -decay near the endpoint.

While the LSS analysis depends heavily on the cosmological model being used and 0νββ

requires the neutrino to be a Majorana particle, the kinematics of β -decay do not depend

on the neutrino mass model and are based on well-known physics. The KArlsruhe TRItium

Neutrino (KATRIN) experiment is designed to explore the absolute neutrino mass scale using

this method with unprecedented sensitivity.

The high precision needed to reach KATRIN’s design goals poses various challenges for the

analysis of the data. This thesis studies strategies for the high-level analysis of the KATRIN

experiment and presents results of the analysis of first KATRIN tritium data.
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Chapter 2

The KATRIN Experiment

The KArlsruhe TRItium Neutrino (KATRIN) experiment is a next generation tritium β -decay

experiment following the measurement principle of its predecessors in Mainz [9] and Troitsk

[10]. It is designed to measure the effective electron anti-neutrino mass

mν =

�
3
∑

i=1

|Uei |2 ·m2
i

� 1
2

(2.1)

with a sensitivity of 200 meV 1 at 90 % confidence level (C.L.).

This chapter gives an overview of the measurement principle of the KATRIN experiment with

a focus on deriving a model used for analysis. Much more details on the experimental setup

can be found in the KATRIN design report [11], the model builds upon [12].

2.1 Neutrino Mass Determination from β-Decay

In a β−-decay process a neutron in a nucleus X is transformed into a proton leaving over

the daughter nucleus Y and emitting an electron e−, an electron anti-neutrino ν̄e and the

surplus energy Q:

X → Y + e− + ν̄e +Q. (2.2)

The released energy Q is shared between the decay products. The daughter nucleus Y is left

with the recoil energy Erec while the remaining energy, called the endpoint E0, is split be-

tween the electron and the anti-neutrino with corresponding energies E and Eν respectively:

E0 =Q− Erec = E + Eν (2.3)

1This thesis uses natural units (~= c = 1) for better readability
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Figure 2.1: Differential tritium β -spectrum in dependence of electron energy.

As the energy of the neutrino Eν is given by

Eν =
q

m2
ν + p2

ν, (2.4)

a neutrino with non-zero rest mass always takes some of the released energy and hereby

reduces the maximal energy E the electron can receive. Equation (2.5) gives the differential

rate for an allowed β -decay in dependence of the electron energy E [13]:

dΓ

dE
= C · F(Z ′, E) · p · (E +me) · (E0 − E) ·

q

(E0 − E)2 −m2
ν ·Θ(E0 − E −mν). (2.5)

Here the constant

C =
G2

F cos2 θC

2π3
· |Mnuc|2 (2.6)

incorporates the Fermi constant GF, the Cabbibo angle θC and the nuclear matrix element

Mnuc, F(Z ′, E) is the Fermi function that accounts for electromagnetic interaction of the

outgoing electron with the daughter nucleus and the Heaviside function Θ assures energy

conservation. This dependence is shown in figure 2.1a while the impact of non-zero neutrino

masses on the β -spectrum shape in the endpoint region is displayed in figure 2.1b.

As one can deduce from figure 2.1b, measuring the differential spectrum in the endpoint

region with sub-eV precision is an option to determine the absolute neutrino mass scale.

From the magnitude of the impact it is clear that one requires an experiment with excellent

energy resolution in the eV range and the very low rates in the endpoint region show that

a highly luminous source is needed. Both needs are fulfilled in the KATRIN experiment and

are explained in section 2.3.

4



Chapter 2 The KATRIN Experiment

2.2 Molecular Tritium as β-Decay Source

Tritium as a β -emitter has various advantageous properties for a β -decay experiment [14]:

• Its endpoint value of E0 ≈ 18.6 keV [13] is the second lowest of all isotopes undergoing

β -decay. A low endpoint value is advantageous as it leads to relatively more counts

in the endpoint region in which the neutrino mass manifests itself 2 and for technical

reasons as it requires lower voltages in operation of the MAC-E filter described in

section 2.3.

• The tritium decay is a super-allowed transition which leads to a rather short half-life of

T1/2 = 12.3 years with correspondingly high rates at low source densities. Additionally

the nuclear matrix element is energy independent and easy to calculate.

• In its molecular form T
2
, tritium can be used in gaseous state at low temperatures.

This state is preferred as systematic uncertainties are decreased and higher rates are

achievable.

Since KATRIN uses tritium in its molecular form, tritium β -decay is described by

T
2
→ (3HeT)+ + e− + ν̄e +Q. (2.7)

2.3 Measuring Principle: MAC-E Filter Electron Spectroscopy

The operation principle of KATRIN is an integral measurement of the tritium β -spectrum

using magnetic adiabatic collimation (MAC) and an electrostatic (E) high-pass filter. It is

depicted in figure 2.2.

Electrons emitted in the source with magnetic field BS are guided along the magnetic field

lines towards the center of the spectrometer and perform a cyclotron motion superimposed

to their movement along the magnetic field. The magnetic field in the spectrometer Bmin is

several orders of magnitude smaller which creates a magnetic field gradient. As the magnetic

flux Φ = B · A is constant, the spectrometer must be much larger than the source. Electron

momentum perpendicular to the field line p⊥ is transformed into momentum parallel to

the field line p‖ adiabatically, meaning electron orbital momentum is conserved, along this

gradient (shown in orange).

A large voltage U in the order of 18 kV is applied at the minimum magnetic field which cre-

ates an electrostatic barrier with energy qU (shown in green). Only electrons with transver-

2See appendix B for a quick derivation.
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Chapter 2 The KATRIN Experiment

U

BS Bmax Bmin Bmax BD

qU

Figure 2.2: Principle of the MAC-E filter, figure adapted from [15].

sal energy E‖ ≥ qU pass this barrier and are re-accelerated towards the detector leading to

the integral measurement of the decay spectrum.

If the source was positioned at maximum magnetic field, all electrons emitted in direction

of the spectrometer would be accepted or in other words the accepted solid angle Ω

4π =
1
2 .

In practice this is unfavourable as electrons with large starting angles travel long distances

in the source which increases their probability to scatter. Therefore the source is placed at

a lower magnetic field BS < Bmax leading to a reduced maximum acceptance angle by the

magnetic mirror effect of

θmax = arcsin

√

√ BS

Bmax

(2.8)

and a correspondingly decreased solid angle of

Ω

4π
=

1− cosθmax

2
. (2.9)

2.4 Experimental Setup

An overview of the experimental setup is given in figure 2.3. Each element is briefly described

in the following paragraphs.

6



Chapter 2 The KATRIN Experiment

a) b) c) d) e) f) g)

Figure 2.3: Overview of the KATRIN experiment with the main components:

a) Rear section

b) Windowless gaseous tritium source (WGTS)

c) Differential pumping section (DPS)

d) Cryogenic pumping section (CPS)

e) Pre-spectrometer (PS)

f) Main-spectrometer (MS)

g) Focal plane detector (FPD)

2.4.1 Rear Section

Main purpose of the rear section is to supply a defined electric potential of the tritium gas in

the source by providing a conducting surface, the rear wall. In addition it houses monitoring

and calibration tools. [16]

2.4.2 Windowless Gaseous Tritium Source

The windowless gaseous tritium source (WGTS) [17] is an ultra stable and highly luminous

gaseous tritium source consisting of a stainless steel tube of lS = 10 m length and dS = 90 mm

diameter. Tritium gas of high purity εT ≥ 95 % is continuously injected into the source

through more than 250 holes at its centre. The gas then freely streams to both ends and

is pumped away by multiple turbo-molecular pumps and then fed into a sophisticated loop

system which reprocesses and re-injects the tritium.

To obtain a high tritium density at reasonable pressure and flow rate and to reduce the effects

of Doppler broadening, the source is operated at a low temperature of about 30 K.

The number of molecules in the source is described by the column density ρd which is the

gas density integrated over the source length. It is related to the total number of tritium

atoms in the source by

Ntot = 2 · AS ·ρd (2.10)

where the factor two accounts for the number of atoms in a T2 molecule and AS is the source

7



Chapter 2 The KATRIN Experiment

area given by

AS = π ·
�

dS

2

�2

. (2.11)

In operation only part of the source area is mapped to the detector to avoid electrons which

scattered on the source tube. The effective source area can be retrieved via the magnetic

flux and the magnetic field in the source:

Aeff =
Φ

BS

. (2.12)

This reduces the effective number of atoms seen to:

Neff = 2 · Aeff ·ρd. (2.13)

During the recent KATRIN tritium campaign the magnetic field of the source was BS = 2.52 T

and the column density was ρd ≈ 4.5× 1021 m−2. The maximum magnetic field setting

Bmax = 4.2T leads to the maximum acceptance angle θmax ≈ 50.77° using (2.8).

2.4.3 Pumping Sections

Tritium from the source may not reach the spectrometers as decay processes in the spec-

trometers would be a major source of background. The task of the pumping sections is to

reduce the tritium flow rate by 14 orders of magnitude in combination with the source which

already achieves a reduction by a factor of 100.

A reduction by more than a factor of 105 is achieved by the differential pumping section

(DPS) [18]which uses turbo-molecular pumps (TMPs). The remaining reduction is achieved

by passive adsorption of tritium molecules onto the tube surfaces in the cryogenic pumping

section (CPS) [19] operated at a temperature of 4.5 K. These cold surfaces are covered by a

thin argon frost layer to enhance the trapping probability of tritium molecules.

Both pumping sections are built in a chicane shape. Electrons are guided adiabatically by

magnetic fields through the turns while uncharged molecules hit the wall and are pumped

away or adsorbed.

2.4.4 Pre- and Main-Spectrometer

Both the pre- and the main-spectrometer are built following the MAC-E filter principle de-

scribed in 2.3.

8



Chapter 2 The KATRIN Experiment

The smaller pre-spectrometer is operated at a retarding energy of around 300 eV less in

absolute value than the main spectrometer. It thus acts as a pre-filter rejecting the majority

of uninteresting electrons that would not make it past the main spectrometer for background

reduction.

Core of the KATRIN experiment is the large main spectrometer with a diameter of 10 m. Its

energy resolution is determined by the magnetic field settings:

∆E

E
=

Bmin

Bmax

. (2.14)

For the recent KATRIN tritium campaign the minimum magnetic field in the analysing plane

of the main spectrometer was Bmin = 6× 10−4 T leading to an energy resolution of ∆E ≈
2.7 eV using (2.14) and assuming an electron energy of 18.6 keV.

2.4.5 Focal Plane Detector

The electrons that pass the main spectrometer are re-accelerated due to the MAC-E filter

and further post-acceleration, as high energy electrons are easier to detect and to shift the

spectrum above detector-related background, and guided to the focal plane detector (FPD)

[20]. The detector is a multi-pixel silicon semiconductor detector with an energy resolution

of around 1.4keV (FWHM) per pixel. The 148 pixels of equal area are arranged in a dart-

board shape as shown in figure 2.4. Each pixel counts the number of electrons detected. The

radial and azimuthal segmentation allows to correct for inhomogeneities in source, magnetic

and electric fields. The efficiency of the detector εdetector is determined by the region of

interest (ROI) cut and physical effects such as back-scattering. Typical values are within 0.9

to 0.95.

9
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Figure 2.4: Pixel segmentation of the focal plane detector.

2.5 Modelling of the Integrated β-Decay Spectrum

This section focusses on deriving a model of the integrated β -decay spectrum describing the

expected rate of the KATRIN experiment. First, two effects modifying the differential rate dΓ
dE

are explained. Afterwards the response of the KATRIN setup is discussed and finally these

components are combined to a complete model of the rate expectation.

2.5.1 Final State Distribution

As described in section 2.2, KATRIN uses tritium in its molecular form as β -decay source.

Therefore the daughter molecule can be in a rotational-vibrational or electronic excited state

with energy Vf and corresponding probability Pf . This modifies equation (2.5) as the effec-

tive maximum energy available for electron and neutrino shifts away from the endpoint:

E0→ E0 − Vf . Introducing ε f = E − E0 − Vf the decay rate now reads as

dΓ

dE
= C · F(Z ′, E) · p · (E +me) ·

∑

f

Pf · ε f ·
Ç

ε2
f
−m2

ν ·Θ(ε f −mν). (2.15)

Precise knowledge of the distribution of these final states is of high importance for neutrino

mass measurements as inaccuracies can lead to a biased neutrino mass result. The final state

distribution (FSD) can be calculated from theory as done for example by Saenz et al. [21].

An excerpt of the FSD of (3HeT)+ is shown in figure 2.5.
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Figure 2.5: Final state distribution of (3HeT)+ according to A. Saenz et al. [21]. The distribution is

split into two parts: the rovibrational ground state (blue) and the excited states (orange).

It is clearly split into two parts:

• the rovibrational ground state centred at 1.7eV with a Gaussian width of about 0.36 eV

• and a set of electronic excited states with energies > 20 eV.

2.5.2 Doppler Effect

Additionally, since the tritium molecules in the source are in thermal motion, the differen-

tial spectrum is broadened by the Doppler effect. This can be described by convolving the

differential spectrum (2.15) with a Maxwellian distribution g:

dΓ

dE
(E)→
∫ ∞

−∞
g(E − ε)dΓ

dE
(ε) dε. (2.16)

In its non-relativistic approximation g is described by a normal distribution

g(E − ε) = g(∆E) =
1p

2πσE

· exp

�

−∆E2

2σ2
E

�

(2.17)

with the broadening width

σE =

√

√

2EkBT
me

mT2

(2.18)

11



Chapter 2 The KATRIN Experiment

depending on the energy of the emitted electron E, the Boltzmann constant kB, the source

temperature T and the mass ratio of the electron and T2. Inserting values typical for the KA-

TRIN experiment, E = E0 ≈ 18.6 keV, T = 30 K, leads to a broadening of σE = 93.5 meV.

At the sensitivity of first tritium measurements, the effect of Doppler broadening on the

model of the rate expectation is negligible.

2.5.3 Response Function

The response function R(qU , E) describes the probability of an electron with energy E to pass

the MAC-E filter at a given retarding energy qU . In an ideal apparatus without energy loss

it would consist of a simple step function:

R(qU , E) =

¨

0 E < qU

1 E ≥ qU .
(2.19)

In the KATRIN experiment two effects dominate the response function: the transmission

function of the MAC-E filter and energy loss due to scattering effects in the source.

Not all the perpendicular momentum of an electron is converted to momentum parallel to

the electric field in the spectrometer. Therefore also electrons with E ≥ qU may not pass the

electrostatic barrier. The transmission probability can be described by

T (qU , E) =













0 E < qU

1−
r

1− f · BS
Bmin
· E−qU

E

1−
r

1− BS
Bmax

qU ≤ E ≤ qU
f ·Bmax

f ·Bmax−Bmin

1 E > qU
f ·Bmax

f ·Bmax−Bmin

(2.20)

with the relativistic factor

f =

E−qU
me
+ 2

E
me
+ 2

. (2.21)

The shape of the transmission function is shown in figure 2.6a for the parameter values

during first tritium measurements (see table A.1 in the appendix).

The major energy loss component is inelastic scattering of electrons with tritium molecules

in the source. The probability of an electron to scatter i-times is described by

Pi =
1

1− cosθmax

∫ θmax

0

sin(θ )

∫ 1

0

Pinel,i(z,θ ) dz dθ . (2.22)

12



Chapter 2 The KATRIN Experiment

Table 2.1: Scattering probabilities in percent

P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

44.42 29.58 15.65 6.785 2.487 0.790 0.221 0.056 0.012 0.003 0.001
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(a) Transmission function
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(b) Response function

Figure 2.6: Shape of transmission and response function for first tritium measurements.

with the inelastic scattering probability

Pinel,i(z,θ ) =
(λ(z,θ ) ·σinel)

i

i!
· e−λ(z,θ )·σinel , λ(z,θ ) =

z ·ρd

cosθ
(2.23)

assuming no angular change after scattering. The energy-dependent inelastic scattering

cross section [22] is given by

σinel(E) =
4πa2

0

E/R

�

1.5487 ln

�

β2

1− β2

�

+ 17.4615

�

(2.24)

with the Bohr radius a0 and the rydberg energy R. The scattering probabilities zero to ten are

listed in table 2.1 assuming a column density value of ρd = 4.5× 1021 m−2 and an energy

E = 18 575 eV.

The energy ε lost by i-fold scattering can be described by the energy loss function fi(ε). An

electron that does not scatter, loses no energy. Its energy loss function is therefore simply a

Dirac δ-function:

f0(ε) = δ(ε). (2.25)

Electrons that scatter once lose energy according to

f1(ε) =







A1 · exp
�

−2
�

ε−ε1

ω1

�2
�

ε < εC

A2 ·
ω2

2

ω2
2
+4(ε−ε2)

2 ε≥ εC

(2.26)
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Figure 2.7: Energy loss function according to [23, 24]. The function for 1 scattering (blue) is the

representation of (2.26). Higher order functions are retrieved by convolving this function

with itself (orange, green, red).

where the Gaussian part comes from excitation processes and the Lorentzian part from ion-

ization of tritium molecules [23, 24]. Energy loss functions for i ≥ 2 scatterings can be

obtained by convolving (2.26) (i − 1)-times with itself. The energy loss functions for one

to four scatterings are displayed in 2.7. This simple analytical energy loss function is not

precise enough for KATRIN’s design sensitivity. Therefore there will be dedicated electron

gun measurements to determine the energy loss function using a deconvolution approach

[25].

The total response function is then composed as a convolution of the transmission function

with the energy loss function.

R(qU , E) =

∫ E−qU

0

T (qU , E − ε)
∞
∑

i=0

Pi · fi(ε) dε (2.27)

In practice 5 to 10 scatterings are considered depending on the size of the analysis window.

Scattering more often is highly unlikely as can be seen in table 2.1. An example of the

response function is shown in figure 2.6b.
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Chapter 2 The KATRIN Experiment

2.5.4 Model of the Rate Expectation

As mentioned at the beginning of this chapter, KATRIN measures an integrated tritium β -

spectrum. The shape is composed of the differential spectrum dΓ
dE (E) described in (2.15) and

the response function R(qU , E) derived in (2.27):

I(qU) = C ·
∫ E0

qU

dΓ

dE
(E) · R(qU , E) dE (2.28)

with the constant prefactor C

C = Neff ·
1− cosθmax

2
· εdetector (2.29)

consisting of the effective number of tritium atoms in the source Neff (2.13), the solid angle

(2.9) and the detector efficiency εdetector.

In addition to the signal, a constant background rate B is expected. The total rate is then

Γ (qU) = I(qU) + B = C ·
∫ E0

qU

dΓ

dE
(E) · R(qU , E) dE + B (2.30)
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Chapter 3

Analysis Strategies

The goal of the KATRIN experiment is to infer a value or upper limit for the effective elec-

tron anti-neutrino neutrino mass. To this end methods of statistical parameter inference,

data combination and treatment of systematic uncertainties are required. In this chapter an

overview of all the techniques considered for neutrino mass analysis is given.

3.1 Maximum Likelihood Analysis

The likelihood function L is used in statistical methods of parameter inference. It describes

how probable a specific outcome of an experiment x is given a model µ. The model itself

can depend on a set of parameters ~θ . The likelihood function then reads as

L =L (µ( ~θ ); x) =L ( ~θ ; x). (3.1)

To retrieve the model that best describes the data, a set of parameters ~θ is found such that

it maximizes the likelihood function.

We now infer the basic likelihood function describing KATRIN data. In KATRIN an integrated

tritium β -decay spectrum is measured. As the decay process itself is stochastic, the number

of expected decays and hence the number of expected electron counts is described by a

probability distribution function (PDF). Assuming the decay rate in the source is constant

and the individual decays are independent of one another, the underlying PDF of the number

of decays is the Poisson distribution in equation (3.2). It describes the probability to observe

N counts given an average model prediction µ( ~θ ):

P(N counts;µ( ~θ )) = e−µ(
~θ )µ

N ( ~θ )

N !
. (3.2)

Thus L (µ( ~θ ); N) = P(N ;µ( ~θ )) is the likelihood function of the parameters ~θ for a single

point of the tritium β -spectrum. The model prediction µ includes the differential tritium

spectrum and modelling of the KATRIN apparatus as described in (2.30).
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The entire spectrum consists of many counts Ni measured at given different retarding ener-

gies qUi . The individual points are statistically independent and therefore the joint proba-

bility distribution Ptotal for the whole spectrum is the product of the individual PDFs

Ptotal(~µ; ~N) =
∏

i

e−µi
µ

Ni

i

Ni!
, (3.3)

where i runs over all retarding energies and µi is defined as µ(qUi; ~θ ).

In practice it is numerically favorable to minimize − lnL instead of maximizing L as the

product of many small numbers quickly leads to numerical difficulties. In addition, taking

derivatives of a sum is much easier than taking derivatives of a product.

For large model predictions µ the Poisson distribution asymptotically tends to the normal

distribution with mean µ and standard deviation
p
µ≈
p

N :

P(Ncounts,µ) =
1p

2πN
e−

(N−µ)2
2N . (3.4)

In this case minimizing − lnL is equivalent to the well-known χ2-minimization:

− lnL (~µ; ~N) = − ln

�

∏

i

1
p

2πNi

e
− (Ni−µi )

2

2Ni

�

= −
∑

i

ln

�

1
p

2πNi

e
− (Ni−µi )

2

2Ni

�

∝−
∑

i

ln

�

e
− (Ni−µi )

2

2Ni

�

=
∑

i

(Ni −µi)
2

2Ni

=:
1

2
χ2(~µ; ~N).

In a basic model there are four free parameters in ~θ : the neutrino mass squared m2
ν, the

endpoint value E0, the normalization of the spectrum AS and the constant background rate

B. An additional parameter ∆qU can be introduced to describe the difference of the WGTS

and main spectrometer work function arising from plasma effects in the source and inho-

mogeneities in the spectrometer. The model prediction at given retarding energy qU and

measuring time t then is described by

µ(qU , t; m2
ν, E0, AS, B,∆qU) = AS · t ·

∫ E0

qU+∆qU

dΓ (E; m2
ν, E0)

dE
·R(qU+∆qU , E) dE+B · t. (3.5)
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3.2 Pixel Combination

The KATRIN focal plane detector is segmented into 148 pixels as described in 2.4.5. Each

pixel measures a statistically independent β -spectrum. In addition to their statistical inde-

pendence, the spectra of each pixel differ due to inhomogeneities in source and fields in the

analyzing plane.

To retrieve one final value for the physical parameters like the neutrino mass squared the

spectra from all pixels must be combined. In the following three different methods for pixel

combination are described and their advantages and disadvantages discussed.

3.2.1 Uniform Fit

The simplest way to combine the spectra of multiple pixels is to add the counts in each pixel

and fit with a single averaged model. Apart from that, this requires:

• averaging the retarding energies seen

by the different pixels,

• averaging any slow control parameters

differing between the pixels, for exam-

ple the magnetic field in the analyzing

plane

• and averaging the live time of each

pixel.

HV B

 counts

livetime

Figure 3.1: Scheme of uniform fit.

Averaging slow control parameters is an approximation which is too simplified for final neu-

trino mass analysis as it leads to a large shift of the neutrino mass squared. This is shown

in table 1 of [12, p. 17], especially by the radial dependence of the retarding energy. Never-

theless the uniform fit approach is usable in case the statistical uncertainty dominates over

the systematic shift of m2
ν.
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Figure 3.2: Distribution of m2
ν over the KATRIN detector for arbitrary Monte Carlo data. The result

m2
ν = 122± 66 meV2 is retrieved using sample mean and error on the mean.

3.2.2 Single-Pixel Fit

Another intuitive way to treat the spectra of multiple pixels is to fit each of them individually.

Therefore:

• each pixel is assigned its own model

• and the likelihoods of the individual pixels are treated independently.

A single value per pixel is retrieved for the fit parameters. In this case one is left with 148

values for the neutrino mass squared m2
ν and the endpoint E0, although there is only one

value for each in nature (see figure 3.2). The most straightforward way to retrieve a single

value with an uncertainty is to use the sample mean and sample variance assuming that the

distribution is Gaussian. This assumption may not be valid, especially if there are underlying

systematic effects.

3.2.3 Multi-Pixel Fit

To handle the shortcoming of the single-pixel fit, namely the difficulty of combining the indi-

vidual results, one can combine the likelihoods of the separate pixels in one large likelihood

Lmul ti with parameters shared between pixels:

Lmul ti =

Npixels−1
∏

i=0

Li =L0(m
2
ν, E0, AS,0, B0) · L1(m

2
ν, E0, AS,1, B1) · ... (3.6)
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Here the neutrino mass squared m2
ν and the endpoint E0 are shared parameters, the signal

amplitude AS and the background rate B are pixel dependent. The total number of free

parameters is then 2+ 2 · 148= 298.

In this case:

• each pixel is assigned its own model,

• the combined likelihood for all pixels is maximized

• and we obtain a single fit result for shared parameters.

The multi-pixel fit therefore automatically provides a single fit result for the physical parame-

ters of interest while still using a different model for each pixel to account for pixel-dependent

effects. The downside of this approach is the large number of free parameters and thus the

increased complexity of the fit.

3.3 Run Combination

The KATRIN experiment will measure the integrated tritium spectrum several thousands of

times. We define each measurement of the spectrum as a “run” while the data taken at a

set retarding energy within one run is called “subrun”. The data of all of the runs must

be combined to retrieve a final neutrino mass result. This section discusses two simplified

options for run combination that can be applied when the slow control parameters were

stable in all runs combined. The more complicated case of varying slow control parameters

is briefly mentioned at the end of the section for completeness.

3.3.1 Run Stacking

In each run the same retarding energies are applied. The data points at same retarding

energies can be “stacked”, meaning the counts and measuring time of the data points are

added to create a single data point from them.

However, due to the finite precision of the KATRIN high-voltage system, the set retarding en-

ergies may not coincide within the sub-ppm measurement accuracy over prolonged periods

of time. This leads to different retarding energies in the spectra being combined which must

then be averaged for the stacked data point.

The stacking process is displayed for one subrun in figure 3.3. One can see the lowering of
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Figure 3.3: Stacking of data points within one subrun. The black points show the actual retarding

energy reading at a given setting from multiple spectra. The red point is the result of the

stacking process.

the statistical uncertainty due to the stacking of multiple data points and the necessity for

averaging the retarding energy because of the spread between the single measurements.

The advantage of stacking is that it greatly reduces the number of points in the analysed

spectrum, leading to a faster analysis process. The downside is the energy scale distortion

induced by the averaging of retarding energies. As derived for example in [15], a distortion

with variance σ2 leads to a shift of the neutrino mass squared by −2σ2. This is an additional

systematic effect which adds to the total systematic budget of the experiment.

3.3.2 Run Appending

Another way to combine the data points of multiple spectra is to combine them as part of

one large spectrum as visualized in figure 3.4. The complete spectrum can now be analysed

in one likelihood including all the data points:

Lappended =

Nruns∏

i=1

Li . (3.7)
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Figure 3.4: Appending of four runs to create one large spectrum. The different types of data points

correspond to different runs.

This method does not lead to an energy scale distortion as the method described in 3.3.1 but

it complicates data handling and fitting due to the large number of data points analysed at

once.

3.3.3 Multi-Run Analysis

In case the slow control parameters of multiple runs vary, two options similar to the pixel

combination are possible: fitting each run individually and combining the results or creat-

ing a combined likelihood with shared parameters between runs. In analogy to the pixel

combination the first approach is called single-run fit where the second is a multi-run fit.
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3.4 Treatment of Systematic Effects

Within the framework of maximum likelihood estimation, let us discuss three options that

were considered for the KATRIN data analysis.

3.4.1 Nuisance Parameter Method

The first method discussed is the so called nuisance parameter or pull term method. The

model is extended by including additional parameters ~θsystematic, such as ρd or B-fields,

that are free in the minimization. Furthermore, the additional nuisance parameters are

constrained by so-called pull terms in the likelihood function.

Pull terms f ( ~θsystematic) are additional terms in the likelihood that only depend on the value

of the systematic parameters ~θsystematic they constrain. Their function f is determined by the

knowledge of the systematic parameters which can be obtained for instance by calibration

measurements.

The general procedure for the pull term method is:

1. Start with initial likelihood without systematic uncertainties Linit(
~θinit).

2. Introduce additional free parameters for the systematic uncertainties

Linit(
~θinit)→Linit(

~θinit, ~θsystematic) =Linit(
~θ ).

3. Constrain systematic parameters with pull terms f ( ~θsystematic)

Ltotal(
~θ ) =Linit(

~θ ) · f ( ~θsystematic).

A typical pull term is the normal distribution for one parameter with Gaussian uncertainty

σ and best value µ:

f (θ ) =
1p

2πσ
e
− (θ−µ)

2

2σ2 . (3.8)

The introduced additional freedom of the fit increases the uncertainty on the fit parameters

accordingly. This broadening is shown in figure 3.5.

The method itself is straightforward and easy to implement. A great advantage of this ap-

proach is that by including the systematic parameters in the fit, the data can be used to
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Figure 3.5: Change of likelihood shape by introducing a pull term using a toy model.

By adding an additional free parameter the initial likelihood (blue) broadens significantly

(orange). Constraining this additional free parameter with a pull term decreases the

width of the likelihood again (green).

learn something about them. Main drawback of the pull term method is the increase of the

number of fit parameters and with it the increased complexity of the fit.

24



Chapter 3 Analysis Strategies

3.4.2 Monte Carlo Propagation of Uncertainty

Another option for the propagation of systematic uncertainties into the fit result is to prop-

agate the distribution of the systematic parameter into the distribution of the fit parameters

using a Monte Carlo sampling method. This approach can be described by a three step

process also shown in figure 3.6:

1. Draw value of the systematic parameter from a given distribution.

2. Fit with the chosen value of the systematic parameter fixed and retrieve the results.

3. Repeat the process often to retrieve the distribution of the fit parameters.

The width of the retrieved distribution of the fit parameters reflects their systematic uncer-

tainty σsys. This can then be added to the statistical uncertainty σstat of the initial fit to

retrieve the total uncertainty σtot =
Ç

σ2
stat +σ

2
sys .

To propagate multiple uncertainties and keep track of correlations, multiple parameters are

varied at once in the first step. The complexity of the Monte Carlo propagation hence does

not depend on the number of systematic parameters and can be extended easily. In addition,

as all N fits are independent, they can be parallelized to speed up the process.

The main downside of the Monte Carlo propagation is that it does not allow learning about

the systematic parameters themselves from the data. They are plugged in with a given dis-

tribution and the final results do not include any additional information on the systematics.

This drawback is especially obvious if the true value of the systematic parameter is shifted

compared to the expectation. In the MC approach the expectation value is used and not

updated according to the data whereas the nuisance parameter includes the systematic pa-

rameter in the fit and allows its best value to change.
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Figure 3.6: Monte Carlo propagation procedure, ordinate in arbitrary units.

1) Sampling distribution

2) Models with different value of systematic parameters

3) Fitted parameter distribution

3.4.3 Covariance Matrix Approach

Within the framework of χ2-minimization, another option similar to the full Monte Carlo

propagation of uncertainty is available using covariance matrices. In this case, instead of

performing a full fit with each drawn systematic parameter, the covariance matrix Vsys of the

different spectra is calculated. This is done by:

• Retrieving Nspectra different model spectra, each with n elemets with corresponding

rates ~µ, drawing the systematic parameter from a given distribution.

• Calculating the covariance of the rates in the spectra using

cov( ~µi , ~µ j) =
1

Nspectra

Nspectra
∑

l=1

(µi,l − 〈 ~µi〉)(µ j,l −



~µ j

�

).

Here ~µi is the vector containing all rates of the point i resulting from varying the

systematic parameter, µi,l is the l th element in the vector and 〈 ~µi〉 is its expectation

value.

• Combining the individual covariances to the covariance matrix

Vsys =









cov( ~µ0, ~µ0) cov( ~µ0, ~µ1) · · · cov( ~µ0, ~µn)

cov( ~µ1, ~µ0) cov( ~µ1, ~µ1) · · · cov( ~µ1, ~µn)
...

...
. . .

...

cov( ~µn, ~µ0) cov( ~µn, ~µ1) · · · cov( ~µn, ~µn)








.
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This covariance matrix reflects the uncertainty the systematic effect introduces onto the spec-

trum and keeps track of the correlation between different data points. It is usable if higher

order terms are negligible and the points of the different spectra are distributed by a multi-

variate normal distribution.

The calculation of the covariance matrix can be performed independently for different sys-

tematic effects k, resulting in multiple matrices Vsys,k. The combined covariance matrix is

then

Vsys =
∑

k

Vsys,k (3.9)

where k runs over the different systematic effects. Statistical uncertainty is approximated

by the square root of the counts
p

Ni at each data point i. In the covariance matrix repre-

sentation, this results in the diagonal matrix

Vstat =











N1 0
N2

. . .

0 Nn











(3.10)

where n indicates the total number of points in the data spectrum.

Finally, the total covariance matrix including systematic and statistical uncertainty is re-

trieved by adding these two compontents:

Vtot = Vsys + Vstat. (3.11)

This matrix is then plugged into the χ2 function which gives:

χ2(~µ; ~N) = (~µ− ~N)T V−1
tot (~µ− ~N). (3.12)

The resulting χ2 is then minimized as usual.

Advantages of this approach are the possibility to treat systematic effects individually and

combine them later, the option to calculate the covariance matrix once and use it for mul-

tiple fits and therefore the overall flexibility and speed. Downside is that it relies on two

assumptions:

1. As the χ2-minimization is used, the data is assumed to follow a Gaussian distribution

which is only valid for high model rates µ.

2. The calculation of the covariance matrix implies that the systematic effect varies the

data points as if they were drawn from a multi-variate normal distribution.
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New Analysis Tool: Fitrium

To efficiently employ the analysis strategies described in chapter 3, a new analysis tool named

Fitrium (Fit Tritium) was developed within the course of this thesis. It is written entirely in

the C++ programming language, utilizes the boost library [26], builds upon the Fitness Stu-

dio, a software framework developed by Martin Slezák for fitting models to data by maximum

likelihood estimation, and is meant to run on GNU/Linux based operating systems.

Fitrium includes a model of the tritium β -decay and the KATRIN apparatus, an application

for Monte Carlo data generation and an application for data fitting as well as various utility

functions. This chapter explains the physics components that are contained in the model,

the overall design of the code as well as the user interface provided. Additionally a brief

overview of the numerical methods is given and a validation of the implemented model is

performed.

4.1 Physics Components

The most important effects describing the β -spectrum are included in Fitrium. Other less sig-

nificant effects such as synchrotron radiation and theoretical corrections can be implemented

in the future as needed given the existing statistical sensitivity of the KATRIN experiment.

Modelling of the differential β -spectrum is done according to (2.15). The final state distri-

butions are read from text files. Currently included files for the corresponding isotopologues

are HT (Saenz), DT (Doss), T2 (Doss) and T2 (Saenz) [21, 27].

The response function of the KATRIN experiment described by (2.27) is included in the

model. Therefore the analytical expression of the transmission function (2.20), the energy

loss function (2.26) and energy-dependent scattering probabilities (2.23, 2.24) are all part

of the code.
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As an additional correction to the β -spectrum, the Doppler effect described in 2.5.2 is also

implemented.

Finally it is worth mentioning that pixel-dependent effects are naturally part of the model.

This is described in more detail section 4.2.

4.2 Code Structure

Here an overview of the code structure and the idea behind it is given. An in-depth expla-

nation of the C++ code can be found in appendix C. The complete structure of the code is

visualized in figure 4.1.

Basic building block of the Fitrium model is the description of the rate expectation of a single

pixel of the focal plane detector in the ModelPixel class. As each pixel is assigned its own

model, parameters varying between pixels can be treated naturally by constructing models

with different values for these parameters. To use the different pixel combination methods

described in 3.2, the single pixel models are treated accordingly. In case of the uniform fit,

the whole detector is treated as if it was a single pixel. Therefore only one ModelPixel is

required which uses averaged parameter values. In contrast, when performing a single-pixel

fit, there is one ModelPixel per detector pixel and each of them is treated independently.

Finally for the multi-pixel fit there is one ModelPixel for each detector pixel, but they share

parameters such as the neutrino mass squared.

In Fitrium three components make up the rate expectation of a single pixel: a description of

the signal rate in the ModelSignal class, the Background class and the Detector. Decoupling

these allows changing one part without having to update another and keeping the overall

pixel combination structure. Currently the Background is a polynomial of order 0 which

takes care of the free parameter B.

The Detector class handles the detector efficiency and knows about the overall pixel seg-

mentation. This allows proper normalization of the rate depending on whether the model

applies to a single pixel as in the single-pixel and multi-pixel fits or to the complete detector

in the uniform fit.

In ModelSignal, which corresponds to the integrated tritium spectrum, an

IntegratedSpectrum is combined with the normalization parameter AS and a Source

class. It therefore calculates the total signal rate which is expected at the detector.

Task of the IntegratedSpectrum class is to integrate an arbitrary differential spectrum over

any response function. As the lower integration boundary is qU + ∆qU (3.5), the ∆qU

parameter is handled by the integrated spectrum. Two different integration algorithms are
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ModelBackground B ModelSignal AS

Detector

IntegratedSpectrum ∆qU
Source

DifferentialSpectrum m2
νE0 ResponseFunction

FSD EnergyLossApprox

ScatteringProbabilities

TransmissionFunction

Figure 4.1: Class diagram of models in Fitrium. Models are colored in blue, additional classes in

red, and parameters in green next to the model which owns them. Models are defined

as classes that inherit from the ModelBase class described in appendix C.

available. A custom local adaptive integration algorithm using Gauss-Legendre quadrature

with Kronrod extension explained in [15, p. 68] and a non-adaptive integration algorithm

from the GNU Scientific Library (GSL) [28].

The class Source which characterizes the source provides the effective number of tritium

atoms by combining column density with the effective source area (2.13) and is able to

calculate the solid angle (2.9).

In nominal KATRIN mode, the differential spectrum is the differential tritium spectrum in-

cluding final states which is implemented according to (2.15). The FSD class takes care of

reading final state distributions from file and evaluating the sum over all final states
∑

f

Pf · ε f ·
Ç

ε2
f
−m2

ν (4.1)

while the DifferentialSpectrum calculates the remaining factors such as the Fermi function

and handles the parameters E0 and m2
ν. There are different implementations of the FSD class

corresponding to the calculations of different theory groups [21, 27] and the three tritium

isotopologues HT, DT and T2. When reading in the final states of a single isotopologue, for

example T2, it is also weighted by its abundancy in the source therefore ensuring correct

normalization.
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To allow integration over an arbitrary response function, all response function classes inherit

from a virtual base class and must provide the call operator

// Pure virtual call operator which must be provided by response functions.

virtual double operator()(double Ekin_electron, double qU) const = 0;

which corresponds to the probability of an electron with kinetic energy Ekin_electron

to pass the spectrometer with a set retarding energy of qU. When performing tri-

tium measurements, the ResponseFunction class is a combination of three components,

EnergyLossApprox, ScatteringProbabilities and TransmissionFunction as described

in 2.5.3.

The EnergyLossApprox class calculates the energy loss function according to (2.26) at dis-

crete points and stores the values. A discrete convolution of these values is performed to

retrieve the energy loss function for two scatterings. The process of discrete convolutions is

repeated iteratively until a user-defined number of scatterings has been considered and the

corresponding values have been stored. To calculate the continuous energy loss function for

n scatterings, a cubic splines interpolation of the matching saved values is performed.

There are two options for the ScatteringProbabilities class. First of all, there is the

simple ScatteringProbabilities representation which calculates the probability to scatter

zero to n times at given energy and slow control parameters. Here n is the maximum number

of scatterings to be considered. These probabilities are stored and can be retrieved with the

GetProbability(int n_scatterings) method. To include the energy dependent scattering

cross section (2.24), the ScatteringProbabilitiesApprox class can be used. It calculates

the probabilties zero to n for multiple values of the product of column density and inelastic

cross section ρdσ and saves these values. To retrieve the scattering probability at any ρdσ

value and therefore any ρdσ(E), cubic splines interpolation is used.

Finally, the TransmissionFunction is the implementation of (2.20) including the relativistic

correction.

4.3 User Interface

This section gives an overview of the complete user interfrace of Fitrium, showing the dif-

ferent configuration options and tools available to the end-user.

In the KATRIN experiment the processed data required by fitting tools is stored in a run sum-

mary file. As such it contains information on counts, retarding energies and measuring time

as well as various slow control parameters such as the column density ρd. For ease of read-

ing and processing in various programming languages, this run summary file is converted to
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the HDF5 [29] format within the Fitrium framework.

Fitrium provides a command line tool, fitrium_fit, which reads the information in the

run summary, performs a maximum likelihood analysis and writes the fit results and other

meta data to an output file which is also in the HDF5 format. Configuration of model and

analysis can be done at runtime editing an initialization (ini) file and providing command line

arguments. Both the configuration file and the command line options are well documented.

An overview of the available options is given in the following paragraphs.

Options that can be set in the configuration file include:

• The likelihood type to use which defines the underlying probability distribution func-

tion. Currently available is the Poisson distribution, the normal distribution and the

normal distribution with covariance matrix to include systematic effects.

• All slow control parameters defining the model such as the column density, the mag-

netic field values or the detector efficiency. As these can be defined in the run summary

file as well, they are treated in a special way which is described later in this section.

• The initial value of the fit parameters such as m2
ν or E0.

• Other model configurations such as the type of final state distribution, the activation

of the Doppler effect and the number of scatterings to consider.

• The differential spectrum and response to use in the integrated spectrum. Currently, in

addition to the differential tritium spectrum with one effective neutrino mass squared,

a spectrum including an additional neutrino mass eigenstate corresponding to a pos-

sible sterile neutrino [30] is available. Options for the response function are the exact

response function as derived in (2.27), an interpolated response explained in section

4.4 and the plain transmission function (2.20).

• Numerical and computational settings such as the integration method and precision

as well as the number of computing threads.

• The activation of various nuisance parameters and the definition of their Gaussian

uncertainty.

In addition, the command line provides options for defining:

• The run summary file(s) to read in and analyse.

• Analysis strategies to use such as the pixel and run combination method.

• The size of the analysis window which defines the retarding energies that are consid-
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Table 4.1: Available plots in Plotrium with reference to example figure.

Plot Example figure

Spectrum with residuals 5.2

Parameter evolution over run 5.3a

Pixel map of fit parameter 5.5a

Pixel distribution of fit parameter 5.7

Parameter distribution from MC propagation 5.10

Deviance distribution 5.9

Correlation plot of two fit parameters E.1

ered. This allows excluding ranges of data points from the analysis, for example in

case the model may not be valid over the complete spectrum.

As model values can be defined in multiple places, to retrieve them a three step process is

used:

1. Read value from run summary.

2. If the previous point is not successful, read value from ini file.

3. If this is also not successful, fall back to a default value.

Therefore slow control parameters which are stored in the run summary, such as ρd, are

automatically applied to the model. Parameters like the starting value of m2
ν, which are not

included in the run summary, start at the second step.

The fit results file written at the end of the analysis contains information on the best fit

parameter values with uncertainty and correlations, a data and model spectrum with corre-

sponding residuals for convenient plotting and various information to ensure reproducibility

of the analysis. For quick plotting another toolkit, Plotrium, has been developed in python.

It can read the fit results and create plots in pdf or png format as well as display the plot on

screen. Plots currently available are shown in table 4.1.

Another command line tool, fitrium_gendata, is used to generate Monte Carlo data in

the HDF5 run summary format. Its model is configured using the same initialization file

as fitrium_fit. The measuring time distribution (MTD) file which defines which fraction

of time is spent at specific retarding energies can be set using a command line flag. MTD

files are plain text files with two columns, one for the retarding energy and one for the time

fraction. The MTD for first tritium measurements, shown in figure 4.2a, and a simple flat time

distribution, displayed in 4.2b, is included in the default installation. To add new MTDs, a file

in the correct two column format can be stored in the ~/.local/share/Fitrium/data/MTD

folder. The total run time which is multiplied with the fraction of measuring time at each
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Figure 4.2: Measuring time distributions included in the default Fitrium installation. The height of

the blue bars indicates which fraction of measuring time is spent at the corresponding

retarding energy.

retarding energy, can also be set from the command line. In addition, options to deactivate

the Poissionian fluctuation of counts and to smear the retarding energies are provided.

Therefore, for Monte Carlo studies, one can run the following tool-chain:

1. Create one or more run summary files using fitrium_gendata. Depending on the

study statistical fluctuations may be turned on or off.

2. Analyse the created files with fitrium_fit, defining the type of analysis, for example

the pixel combination method, at runtime.

3. Visualize the fit results using Plotrium or read in the created HDF5 fit results file with

a custom script.

The complete study can be performed without having to touch the source code and with mul-

tiple configurations available in the initialization file and the command line. When analysing

real data, the first step is replaced by retrieving the appropriate HDF5 run summary file. A

summary of the user interface and the various tools is shown in figure 4.3.

As an additional aid to the user, a logging infrastructure which allows defining the log level

at run time is provided. The default log level, info, gives information on the current status

of the program. An example output for fitrium_gendata is shown in figure 4.4. Much
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fitrium gendata

Run summary

Ini file

Command line

fitrium fit Fit results Plotrium

Spectrum

Pixel map

Figure 4.3: Overview of user interface of Fitrium. Files are colored in red, developed tools in blue

and others in green. fitrium_fit processes the input, performs the analysis and writes

fit results to file while Plotrium is used to create standard plots. It is possible to generate

MC run summary files using fitrium_gendata.

Figure 4.4: Example log output of fitrium_gendata at log level info.

more information can be retrieved when the level is set to debug or even trace which allows

back-tracking problems. If less output is wished, the options warning, error and fatal can be

selected.

4.4 Numerical Methods

A major challenge of the KATRIN analysis is the combination of a computationally expensive

model calculation with many free parameters. Therefore, the following means to speed up

the calculations have been implemented in Fitrium.

Multi-Threading

To make use of modern multi-core and multi-thread infrastructures, the model evaluation

in Fitrium is thread-safe. This allows parallelizing the calculation of the likelihood product

(3.3) where the model must be evaluated once per factor. In addition, parallelization is used

when calculating the scattering probabilities for different ρdσ values and for preparing the

response cache which is explained next.
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Figure 4.5: Scheme of response function interpolation. The transmission step is always calculated

exactly while the rest of the response function is interpolated using cubic splines.

Response Cache

As the response function (2.27) is very expensive to calculate, an additional class was intro-

duced to cache and interpolate the response function. The response function is evaluated

at finely spaced discrete points upon construction and cubic splines interpolation is used to

approximate the response function between these points. The spacing depends on the size

of the analysis interval, typical values are between 0.1 eV to 1.0 eV. As calculating these

points is expensive, it can take up to a few minutes, the points are stored in an HDF5 file

~/.cache/Fitrium/response.h5 so they can be re-used in further analyses.

The transmission step at the beginning of the response function must be known very well

for neutrino mass analysis. Therefore interpolating it is not feasible and this step is always

calculated exactly. This is depicted in figure 4.5.

Interpolating the response function is a large performance improvement, as it leads to a

speed up of a simple fit of over an order of magnitude. Downside is that it does not allow

fitting parameters that impact the response function like the column density or the mag-

netic fields. This makes the nuisance parameter method impossible in combination with the

approximated response.

Explicit Derivatives

Many algorithms for numerical optimization make use of gradient information to efficiently
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find the minimum of a function. Numerical derivatives, which are often used by these

gradient-based algorithms, amplify noise and are expensive to calculate as they require mul-

tiple model evaluations. To avoid these problems, the derivatives are passed in a semi-

analytical way to the minimizer by Fitrium.

The derivatives are implemented analytically in the class in which they appear and the nu-

merical value of the derivative is then passed through the remaining steps of the model

evaluation. To clarify this procedure let us consider the derivative by the neutrino mass

squared m2
ν.

The neutrino mass squared appears in the final states sum of the differential spectrum (2.15),

so this is where the derivative must be calculated:

d

dm2
ν

�

ε f

Ç

ε2
f
−m2

ν

�

=
−ε f

2
Ç

ε2
f
−m2

ν

. (4.2)

This derivative value can be calculated and then plugged into the final states sum. The

updated value of the sum is now passed into the differential spectrum, then into the in-

tegrated spectrum and finally to the signal and pixel model. To modify as few lines of

code code as possible, the evaluation functions are templated. Returning to the example

of the neutrino mass squared, the evaluate method of the differential spectrum is templated

in the type of final states kinetic term. In model evaluation, the standard KineticTerm

function is passed to the evaluate function. To retrieve the derivative with respect to m2
ν,

KineticTermMnu2Derivative is passed instead. The corresponding code fragments are

shown below.

// Templated evaluation of differential spectrum to allow easy replacing of

// the different types of final state sums

template <typename FSDFunc>

double DifferentialSpectrum::Evaluate(const DataPointBase &point,

FSDFunc &fsd) const;

...

// Regular kinetic term of final states for standard evaluation

inline double KineticTerm(double eps, double mnu2)

{

return eps * sqrt(eps * eps - mnu2);

}

// Neutrino mass squared derivative

inline double KineticTermMnu2Derivative(double eps, double mnu2)

{

return -0.5 * eps / sqrt(eps * eps - mnu2);

}

These so called explicit derivatives increase the numerical precision of the derivative by sev-
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Figure 4.6: Emulation of Doppler broadening in final state distribution. The initial FSD (blue) is

transformed to a broader distribution with more states (orange).

eral orders of magnitude and therefore greatly help a gradient-based minimizer. In addition,

as the model is only evaluated once per derivative instead of multiple times, a significant

speed-up is achieved.

Emulation of Doppler Broadening in FSD

Doppler broadening is described by the convolution of the differential spectrum with a broad-

ening kernel (2.16). As the convolution involves an additional integral, it is very expensive

to evaluate. To avoid this integration, Fitrium emulates the Doppler broadening in the final

states distribution.

This is done by replacing each discrete final state with energy Vf and probability Pf with a

Gaussian

g f (E) =
Pfp

2πσE

exp

�

−
(E − Vf )

2

2σ2
E

�

(4.3)

with mean Vf , width σE and normalization Pf . This results in a continuous final state func-

tion Fcont given by the sum over all Gaussian distributions

Fcont(E) =
∑

f

g f (E). (4.4)

To retrieve an updated, broadened, final state distribution, Fcont is then re-binned. This new

final state distribution is then used when evaluating the final states sum in the differential

spectrum 2.15. The effect on the final state distribution is shown in figure 4.6.
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Table 4.2: Comparison of SSC input values and Fitrium fit results.

Parameter Input value Fit result

m2
ν 0.42 eV2 0.39± 0.05 eV2

E0 18 575 eV 18 575.050± 0.004 eV

AS 1.0 0.99936± 0.000 33

B 0.287 cps 0.287± 0.003 cps

4.5 Validation

To validate the newly developed model, it was cross-checked against the independently de-

veloped KATRIN model SSC (Source and Spectrum Calculation) [31, p. 85]. In a first step,

the numerical values of different components were compared. The components tested in-

clude the differential spectrum, the energy loss function, the transmission function, the scat-

tering probabilities and the integrated spectrum. Other than negligible differences occuring

from different numerical methods and the use of other references for the values of physical

constants, the two models agreed.

For further probing of this agreement at the sensitivity of KATRIN, three years of KATRIN

data taking was generated using SSC as the underlying model and analysed with Fitrium.

The tool to create the data file was developed over the coarse of this thesis and is briefly

described in appendix D.

Input values and the retrieved fit results are summarized in table 4.2. m2
ν and B were recov-

ered within uncertainty while E0 and AS are very close on absolute scale but differ slightly

due to for example the different references for the values of physical constants. Overall the

two models match very well and thus the developed Fitrium model passed the validation

test.
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Analysis of First Tritium Data

The KATRIN experiment took first tritium data from May 18 to May 19, referred to as very

first tritium (VFT) and from June 5 to June 20 referred to as first tritium (FT). The goal

of these measurements was to commission the full KATRIN system with 1% of the nominal

activity and to demonstrate a global system stability on the 0.1 % level. In addition it allows

to study the β -spectrum for systematic effects and to test the analysis strategies.

During the very first tritium campaign a known gas mix with tritium was injected from a pre-

pared cylinder leading to rather unstable slow control parameters, especially to a declining

column density over time. During the first tritium measurements the full KATRIN loop sys-

tem was available and therefore the slow control parameters were more stable. An overview

of slow control parameters during the first tritium campaigns can be found in appendix A.

If not mentioned otherwise, the two outer rings of the FPD and pixels 100, 112 and 123 are

excluded from the analysis. “The outer two pixel rings show a decreased rate indicating the

flux tube boundary. A slight misalignment of the flux tube is noticeable at the bottom left

border of the FPD...” [32, p. 24]. Pixels 100, 112 and 123 were shadowed by the forward

beam monitor1.

As the statistics of these measurements is low compared to the final KATRIN analysis, de-

coupling the endpoint E0 from work function effects ∆qU is not possible. Therefore for the

following analysis an effective endpoint E0,eff = E0 +∆qU which absorbs these work func-

tion effects into the absolute endpoint value is used. The uncertainty of the work function

difference between WGTS and main spectrometer is on the order of ∆qU ≈ ±0.5eV and is

a systematic bias of the effective endpoint compared to the true value.

1The forward beam monitor (FBM) is a detector used to monitor the incoming electron flux before the KATRIN

spectrometers to check rate stability [33].
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Figure 5.1: Overlay of Fitrium model prediction and KATRIN VFT data (run 40 263). The model

matches the data within 0.3 %.

5.1 Initial Comparison of Model and Data

As an initial comparison of the developed model to the data, the model prediction is overlaid

with the spectral data of a run of the VFT campaign without performing any fit. As shown

in figure 5.1 the model expectation provides agreement with the data within 0.3 % in the

complete energy range of 1.6 keV below the endpoint.

As next step Fitrium is used to fit the model to the data. At first, a uniform fit (all pixels

combined as described in 3.2.1) of the data with three free parameters, effective endpoint of

the tritium spectrum E0,eff, signal normalization AS and background rate B is performed. The

fit results for the full 1.6 keV range as well as for a smaller 400eV range below E0 are shown

in figure 5.2. The residuals show no structure and the reduced deviances of Dred = 0.95 (17

dof) and Dred = 1.0 (23 dof) are in good agreement with the expectation of 1.02.

2The deviance D is a goodness-of-fit statistic generalizing the idea of the χ2 statistic to arbitrary likelihoods. The

reduced deviance is defined as Dred = D/ndof with the number of degrees of freedom ndof. Asymptotically

the deviance follows the χ2-distribution with n−k degrees of freedom, where n is the number of observations

and k is the number of free parameters in the model. Thus, in such a case, the expected value of D/ndof is

one.
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(b) Full 1.6 keV range: Dred = 1.0 (23 dof)

Figure 5.2: Initial uniform fit of KATRIN VFT integral spectrum (run 40 263).

5.2 Parameter Stability over Time

To check the overall stability of the KATRIN system a set of three hour runs of the first tritium

campaign is analysed using a uniform fit in the 400eV range considering only statistical un-

certainty. The evolution of the three fit parameters, effective endpoint, signal normalization

and background, is displayed in figure 5.3. As one can see in table 5.1, effective endpoint

and background are stable within statistical fluctuations. The signal normalization fluctuates

more as it is affected directly by many different parameters, for example the column density

ρd and the number of tritium atoms NT . Thus systematic effects must be taken into account

to explain this fluctuation.

The deviance distribution of these 27 uniform fits is shown in figure 5.4. It matches the

expected χ2-distribution.

Table 5.1: Goodness of fit of a constant to parameter evolution shown in figure 5.3.

Parameter Deviance ndof p-value

E0,eff 25.41 26 0.49

B 26.74 26 0.42

AS 98.33 26 0.00
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Figure 5.3: Parameter evolution during FT measurements, runs 40 667 to 40693, uniform fit. The

reduced deviances correspond to the result of fitting a constant to the data. Effective end-

point and background are stable within statistical fluctuations while the normalization

fluctuates more due to systematic effects.
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Figure 5.4: Deviance distribution of the 27 uniform fits of runs 40667 to 40 693 compared to the

expected χ2-distribution.

5.3 Parameter Distribution over the Focal Plane Detector

To check for spatial inhomogeneities, the data of runs 40 667 to 40 693 is appended as ex-

plained in 3.3.2 and each pixel is fit individually. The resulting parameter distribution is

displayed over the KATRIN detector pixel map in figure 5.5.

The effective endpoint map 5.5a and the normalization map 5.5b show no structure. In

contrast the background map shows a clear radial and azimuthal dependence as seen in 5.5c.

The pattern is compatible with the one obtained in an earlier background-only measurement

[34, p. 79].
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(a) Effective endpoint map:

E0,eff = 18 573.434± 0.053 eV
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Figure 5.5: Distribution of fit parameter differences from their mean values over the KATRIN FPD,

runs 40 667 to 40 693, single-pixel fit, runs appended. Effective endpoint and normal-

ization show no structure whereas the background has a clear radial and azimuthal de-

pendence.
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5.4 Comparison of Analysis Strategies

The analysis strategies introduced in chapter 3 are now applied to first tritium data and

compared using the value of the effective endpoint E0,eff as physics parameter of interest for

comparison. The 400 eV energy range is always used.

5.4.1 Pixel Combination

To compare different pixel combination methods all runs from 40 667 to 40 693 are analysed

independently with the three different approaches using statistical uncertainty only. The fit

result for the effective endpoint is summarized in table 5.2 for run 40 667 as an example.

The values for the effective endpoint are equal within uncertainty and the uncertainties are

comparable. This also holds for the other runs analysed. To compare the goodness-of-fit of

the different methods, the reduced deviance and the p-values for all 27 runs are shown in

figure 5.6. On the one hand the average p-value of the uniform fit of 0.40 is closer to the

expectation of 0.5 than the one of the single- (0.10) and multi-pixel (0.12) fit respectively.

On the other hand the reduced deviances of the uniform fit have a much larger spread and

the average value is larger than the one of the single-/multi-pixel fit. This can be explained

by the fact that the number of degrees of freedom is much larger for the single- (2057 dof)

and multi-pixel (2177 dof) fit which leads to a very narrow χ2-distribution. Therefore slight

divergences from the expectation of Dred = 1.0 result in a low p-value.

The fact that the three different methods lead to very comparable results leads to two inde-

pendent conclusions. As the uniform fit, which makes use of an averaged model, leads to the

same results as the single-/multi-pixel fits, the small model differences between the individ-

ual pixels have no significant impact at the current statistical sensitivity. Furthermore, since

the single-pixel fit, which uses mean and error on the mean to combine pixels, agrees with

the multi-pixel fit, the distribution of the individual fit results over pixel is approximately

Gaussian, as shown in figure 5.7. As KATRIN takes more data, these two statements may no

longer hold.

Table 5.2: Fit result summary of different pixel combination strategies for run 40667.

E0,eff (eV) Deviance ndof p-value

Uniform 18 573.21± 0.30 11.44 17 0.83

Single-pixel 18 573.11± 0.27 2159 2057 0.06

Multi-pixel 18 573.20± 0.32 2259 2177 0.11
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Figure 5.6: p-value and reduced deviance of different pixel combination strategies for runs 40667 to

40 693. The points correspond to the values of a single run. The dashed line represents

the mean value.
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5.4.2 Run Combination

Here run stacking and run appending explained in 3.3.1 and 3.3.2 is compared by combining

runs 40 667 to 40 693 using statistical uncertainty only. As a first step, the spectra and fit

results resulting from a uniform fit are compared in figure 5.8 and table 5.3 respectively.

Table 5.3: Results of different run combination strategies for uniform fit of runs 40667 to 40 693.

E0,eff (eV) Deviance ndof p-value

Stacked 18 573.41± 0.06 42.9 17 0.0004

Appended 18 573.41± 0.06 589.5 537 0.06

Both residuals show no clear structure and a comparable tendency. The effective endpoint

value and uncertainty retrieved by stacking and appending is identical but in this case the

model description of the stacked spectrum can be rejected at the 3-σ level when not including

systematic effects.

As a next step, the single-pixel fit is used to be able to compare the deviance distributions of

the two run combination approaches which are displayed in figure 5.9. As one can see, in the

case of stacking the χ2-distribution is reproduced while when appending the fitted deviances

are shifted slightly to larger values. Similar to the single- and multi-pixel fit, when appending

runs, the number of degrees of freedom is very large and small differences between model

and data show drastically.

Overall, there is no significant difference between run stacking and appending at the sensitiv-

ity of first tritium data. Further investigation of their effect for neutrino mass measurements

will be done.
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(a) Stacked: E0,eff = 18 573.41± 0.06eV, Dred = 2.52 (17 dof)
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Figure 5.8: Spectrum and residuals for uniform fit of runs 40 667 to 40693.
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Figure 5.9: Deviance distribution for single-pixel fit of runs 40667 to 40 693. In the stacked case the

data matches the χ2-distribution while the data is shifted to slightly larger values when

appending.

5.4.3 Treatment of Systematic Effects

Run 40 667 is analysed using the uniform fit with the three different approaches for treat-

ment of systematic effects for comparison. A single systematic parameter, the column density

ρd with uncertainty 5 %, is considered for simplicity. As a reminder, the result for the cor-

responding fit with statistical uncertainty only was E0,eff = 18 573.21± 0.30 eV. The MC

propagation method leads to the effective endpoint distribution shown in 5.10 with a width

of σsys = 0.46 eV and hence a total uncertainty of σtotal = 0.55 eV when adding in squares.

All results are summarized in table 5.4.

Table 5.4: Results of different systematic treatments for uniform fit of run 40 667. The results for

the effective endpoint agree within uncertainty. All uncertainties are between 0.5 eV to

0.55 eV. When using the covariance matrix approach, the goodness-of-fit is described by

the χ2. In the other cases the deviance is used.

E0,eff (eV) Deviance / χ2 ndof p-value

Statistical only 18 573.21± 0.30 11.44 17 0.83

MC propagation 18 573.21± 0.55 11.30 17 0.84

Nuisance parameter 18 573.23± 0.52 11.29 17 0.84

Covariance matrix 18 573.17± 0.52 11.46 17 0.83
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Figure 5.10: Effective endpoint distribution from Monte Carlo propagation compared to a Gaussian.

The distribution matches the normal distribution with E0,eff = 18 573.24± 0.46 eV.

In all three cases, including the systematic uncertainty on the column density increases the

uncertainty on the effective endpoint from 0.30 eV to around 0.5 eV to 0.55 eV. The results

for the effective endpoint all agree within uncertainty. Thus, in this case, all three approaches

were successfully applied to the data. As the nuisance parameter method and the covariance

matrix approach provide the convenience of not having to perform several thousands of fits,

they are preferred over the full Monte Carlo propagation of uncertainty. As the covariance

matrix is being studied extensively by another team in the KATRIN experiment [35], the

focus of the following analyses will be on the pull term method.

5.5 Analysis with Major Systematic Effects

After comparing the various analysis strategies, a complete analysis with major systematic

effects is performed for runs 40 667 to 40 693. As the sophisticated pixel combination meth-

ods do not have an impact on the analysis at the sensitivity of first tritium data, the uniform

fit is used.
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Only Nuisance Parameter

In a first step, all runs are appended and the systematic uncertainties are all treated with the

nuisance parameter approach. The systematic effects considered are:

• 2 % on the magnetic field in the source BS

• 2 % on the maximum magnetic field Bmax

• 2 % on the magnetic minimum magnetic field Bmin

• 5 % on the column density ρd

• 2 % on the inelastic cross section σinel

• 3 % on the FSD onset parameter F

with the FSD onset parameter F which describes the ratio between rovibrational ground

state and electronic excited states. The fit results are summarized in table 5.5. Compared

to the appended fit without systematics, the uncertainty on the effective endpoint increases

from 0.06 eV to 0.20 eV and the p-value improves from 0.06 to 0.12.

Nuisance Parameter and Covariance Matrix

As this analysis did not include the uncertainty on the activity fluctuation due to fluctuation

of the DT concentration in the source within one run and this uncertainty is difficult to

parametrize with a pull-term, in a second step the nuisance parameter and covariance matrix

method are applied simultaneously. In this case, the runs have to be stacked to reach a large

enough number of counts to use the χ2-minimization. The systematic uncertainties are

treated as following:

• pull term on ρdσinel with uncertainty
p

5 %2 + 2%2 = 5.39 %,

• pull term on F with uncertainty 3 %,

• one covariance matrix including the uncertainties on the three magnetic fields, namely

2 % on BS, 2 % on Bmax and 2 % on Bmin

• and one covariance matrix including the 0.1 % uncertainty on the activity fluctuation

within one run.

The result of this analysis is also displayed in table 5.5. Including systematic effects signifi-

cantly improves the stacked fit, the deviance reduces from 42.9 to 20.06 which corresponds

to an increased p-value from 0.0004 to 0.27. The uncertainty on the endpoint was raised

from 0.06 eV to 0.24 eV.
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Table 5.5: Fit results for uniform fit of runs 40 667 to 40 693 including systematic effects. In case

of only using nuisance parameters, the runs were appended whereas when adding the

covariance matrix the runs were stacked. When using the covariance matrix approach,

the goodness-of-fit is described by the χ2. In the other case the deviance is used.

E0,eff (eV) Deviance / χ2 ndof p-value

Nuisance parameter 18 573.88± 0.20 575 537 0.12

Nuisance parameter and cov. matrix 18 574.33± 0.24 20.06 17 0.27

In both analyses the uncertainty on the effective endpoint is increased and the goodness-

of-fit is improved compared to the statistics-only analysis. This is expected when including

additional systematic uncertainty. On top of that a tendency to increase the effective end-

point value when adding systematic effects is observable. With statistical uncertainty only,

E0,eff = 18 573.41 eV, when adding multiple systematic effects with the nuisance parameter

approach it increases to E0,eff = 18 573.88 eV and the addition of the activity fluctuation as

systematic effects leads to another raise to 18 574.33 eV. Overall, both methods are in good

agreement.

Additional systematic effects which were not included in this analysis are uncertainties on

the parameters of the energy loss function (2.26). Also, the uncertainty on the FSD will

be refined in the future. For this work, the FSD onset is treated with an overestimated un-

certainty of 3 % to compensate for non-considered uncertainties of the individual excitation

probabilities.
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5.6 Summary of Fit Results

Table 5.6 summarizes the results for the effective endpoint of the different analysis tech-

niques for quick reference. The table is visualized in figure 5.11.

Table 5.6: Overview of fit results from different analysis strategies. The appended analysis includ-

ing systematics corresponds to the one in 5.4.3 with only nuisance parameters whereas

the stacked analysis including systematics is the one with nuisance parameters and the

covariance matrix.

Pixel(s) Pixel comb. Run(s) Run comb. Uncertainty E0,eff (eV)

0 none 40 667 none stat. only 18 576.8± 3.0

all uniform 40 667 none stat. only 18 573.21± 0.30

all single-pixel 40 667 none stat. only 18 573.11± 0.27

all multi-pixel 40 667 none stat. only 18 573.20± 0.32

0 none 40 667 to 40 693 appended stat. only 18 574.40± 0.62

all uniform 40 667 to 40 693 stacked stat. only 18 573.41± 0.06

all uniform 40 667 to 40 693 appended stat. only 18 573.41± 0.06

all single-pixel 40 667 to 40 693 appended stat. only 18 573.43± 0.05

all uniform 40 667 to 40 693 appended stat. + sys. 18 574.19± 0.20

all uniform 40 667 to 40 693 stacked stat. + sys. 18 574.33± 0.24

The statistical uncertainty when analysing a single run and a single pixel is 3.0 eV. When

including a total of 121 pixels, the uncertainty drops to 0.27 eV to 0.32 eV corresponding

to approximately a factor of 10. This is in good agreement with the statistical expectation

of
p

121 = 11. All three pixel combination methods agree within value and uncertainty.

The analysis of a single pixel but 27 runs combined leads to an uncertainty around 0.62 eV.

Compared to the single pixel, single run fit this is a decrease of about a factor of five which

is again in agreement with the statistical expectation.

Stacking and appending runs leads to the same effective endpoint value and uncertainty.

The uncertainty of 0.06 eV is also statistically expected in comparison with the uncertainty

of a single pixel and single run, as: 3.0p
27·121

≈ 0.053.

When adding systematic effects, the uncertainty of E0,eff is increased to 0.24 eV. All values

for the effective endpoints are in good agreement with the expectation given the estimate of

uncertainty on the work function difference of ±0.5 eV as shown in figure 5.11.
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Figure 5.11: Overview of fit results from different analysis strategies. All results are in good agree-

ment with the expectation. The appended analysis including systematics corresponds to

the one in 5.4.3 with only nuisance parameters whereas the stacked analysis including

systematics is the one with nuisance parameters and the covariance matrix.
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Conclusion and Outlook

In this thesis the first tritium data of the KATRIN experiment was analysed and based on this

data set, different analysis strategies to combine data from different pixels and runs as well

as systematics treatment were realized and successfully tested. To this end, a new analysis

tool Fitrium was developed and employed.

Three different strategies for combining pixels, the uniform, single-pixel and multi-pixel fit,

were worked out. With the sensitivity of first tritium data, all three are in good agreement.

This statement will no longer hold for neutrino mass analysis as pixel-dependent effects

matter at the increased statistics and the uniform fit is therefore no longer valid.

Concerning the combination of the spectra of different runs, two strategies were investi-

gated: run stacking and run appending. While stacking eases data handling, appending

makes no approximation. At the sensitivity of first tritium data, no significant difference was

observed.

Finally, three different techniques to include systematic uncertainties were investigated: the

nuisance parameter, Monte Carlo propagation and covariance matrix approach. The nui-

sance parameter method has proven to be feasible. Including multiple systematic effects in

the analysis using this method led to an increase of uncertainty of the effective endpoint and

improved the deviance distribution. Downside of this approach is the increase in fit com-

plexity that comes with introducing more free parameters. The full Monte Carlo propagation

was shown to lead to similar results, however, it is very computationally expensive and may

not be the preferred path for the future. Also the analysis with the covariance matrix led

to consistent results. This method is being investigated in detail with the so-called SAMAK

analysis tool.
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As a result of the analysis presented in this work, a good agreement between model and

data could be demonstrated. The effective endpoint of the tritium spectrum is stable over

time and distributed homogeneously over the KATRIN detector. Background values are stable

from run to run but a clear radial and azimuthal dependence is visible. In a combined analysis

including major systematic effects, the value of the effective endpoint is found to be E0,eff =

18 574.33± 0.24 eV. Taking into account the uncertainty on the work function difference

between source and main spectrometer, this is in good agreement with the expectation.

The analysis tools and strategies developed in this thesis will serve as a basis for the forth-

coming neutrino mass measurement. In the future with increasing statistical sensitivity

the comparison of the different data combination methods will continue. As a next step,

more effects such as synchrotron radiation and theoretical corrections will be included in

the Fitrium model.

Further optimization of the fitting strategy will be required. An option here is to use a run-

wise model or grouping runs depending on their slow control parameters. Systematic effects

for first tritium are different than the ones in the upcoming neutrino mass measurement.

Therefore these will have to be investigated with care. To treat them, the nuisance parameter

and the covariance matrix approach can be utilized and combined.
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Appendix A

Slow Control Parameter Values for

First Tritium Measurements

The values of the slow control parameters during KATRIN very first tritium (VFT) and first

tritium (FT) measurements used for modelling are summarized here.

Table A.1: Slow control parameter values for VFT and FT.

Parameter VFT value FT value

BS 2.52 T 2.52 T

Bmax 4.2 T 4.2 T

Bmin 6× 10−4 T 6× 10−4 T

ρd 4.5× 1021 m−2 4.5× 1021 m−2

εdetector 95 % 95 %

εT
2

0.0 % 0.0 %

εHT 0.0 % 0.0 %

εDT 0.9 % to 1.2 % 1.0 %
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Appendix B

Derivation of Relative Number of

Counts in Endpoint Region

In the endpoint region E ≈ E0 the differential decay rate (2.5) neglecting the neutrino mass

can be approximated by

dΓ

dE
= C · F(Z ′, E) · p · (E +me) · (E0 − E)2 (B.1)

≈ C · F
q

(E0 +me)
2 −m2

e · (E0 +me) · (E0 − E)2 (B.2)

∝ E2
0 · (E0 − E)2 (B.3)

The number of counts in a small interval ∆E close to the endpoint is then

∆N ∝ E2
0

∫ E0

E0−∆E

(E0 − E)2dE = E2
0 ·

1

3
∆E3 (B.4)

∝ E2
0 (B.5)

while the total number of counts N is

N =

∫ ∞

0

dΓ

dE
dE∝ E5

0
1. (B.6)

Therefore the relative number of counts in the endpoint region is

∆N

N
∝ 1

E3
0

. (B.7)

1Integral calculation is straightforward but tedious.
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Appendix C

In-Depth Code Explanation of Fitrium

In this appendix an in-depth explanation of the ideas behind the C++ code of Fitrium is

given.

Fitness Studio Base Classes

Fitrium, building upon the Fitness Studio, makes use of various base classes provided by it.

The ones important for understanding the following code are briefly explained here.

ModelBase

This class is used as base class for every model, examples include the differential spectrum

and the response function. ModelBase takes care of parameter handling and provides an

interface for treating explicit derivatives (see 4.4) of these parameters.

The inherited class must mainly provide the Evaluate method which calculates the model

value given the current parameter values and pass the parameters with explicit derivatives

to ModelBase upon construction.

DataPointBase

DataPointBase is the simplest possible data point, a single value corresponding to the

independent variable. Inherited classes can add to this information. For example,

DataPointPoisson adds counts and times and DataPointNormal adds a dependent vari-

able with an uncertainty. For the following code, it is sufficient to consider the data point as

the value of the independent variable.
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Chapter C In-Depth Code Explanation of Fitrium

Model Decoupling

The different building blocks of the Fitrium model shown in figure 4.1 are loosely coupled

classes that allow changing different parts without affecting the whole. How this works is

explained in this section using two different examples.

Changing Signal or Background Model

As explained in 4.2, the basic building block is the description of a single pixel of the detector

in ModelPixel. Its three components, signal, background and detector are passed to it in

the constructor. Both the signal and the background must inherit from ModelBase.

// Pass signal, background and detector class in the constructor

ModelPixel(ModelBase &model, ModelBase &background, Detector detector);

The ModelPixel stores model, background and detector and knows how to combine the

information from them to retrieve the rate expectation of the single pixel in its Evaluate

method.

// Calculate rate expectation of single pixel

double ModelPixel::Evaluate(const DataPointBase &point) const

{

return (fSignalModel.Evaluate(point) * fDetector.SignalPrefactor()

+ fBackgroundModel.Evaluate(point))

* fDetector.Normalization();

}

As the only requirement to the signal and background model is to provide the Evaluate

method, which is already needed by ModelBase, different model implementations can be

passed as signal or background without implying changes to ModelPixel.

Changing Differential Spectrum or Response Function

Similar to ModelPixel, the integrated spectrum takes the differential spectrum and the re-

sponse function by reference to their base class in the constructor.

// Pass differential spectrum and response function in the constructor

// ... substitutes additional parameters not required for understanding

IntegratedSpectrum(ModelBase &diffspec, ResponseBase &response, ...)
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Chapter C In-Depth Code Explanation of Fitrium

To use a different differential spectrum or response function one can pass these updated

classes to the constructor as long as they inherit from the appropriate base class. The inte-

grated spectrum can remain the same.

Building and Configuration

As parameter values and other settings are changed often, a flexible configuration and build

structure has been developed to allow varying these options without having to touch the

source code. All objects must be defined upon construction. The basic build process can be

split into two parts:

1. Retrieve properties.

2. Construct objects.

This two-step process is reflected in the builder structure. A base class BuilderBase can

construct the objects but it must be combined with another class which knows how to retrieve

properties. These can be of different type, for example BuilderIni reads properties from the

ini configuration file while BuilderHDF5 reads in data files in the HDF5 format [29]. The base

class is templated in the BuilderType and the corresponding builder is passed to the base

class on construction. The object of type BuilderType must implement the GetProperty

method for BuilderBase.

1 template <class BuilderType>

2 class BuilderBase

3 {

4 public:

5 // Initialize base class with builder of BuilderType.

6 BuilderBase(BuilderType builder);

7

8 // Dummy method to show builder principle.

9 Object CreateObject() const

10 {

11 return Object(fBuilder.GetProperty(BuilderKey::Property1));

12 }

13 ...

14 private:

15 // Templated builder class to retrieve properties from.

16 const BuilderType fBuilder;

17 };
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As hinted in line 11, all properties are defined as objects of type BuilderKey. The BuilderKey

stores type of the object (double, bool, int, ...), the path to this property in config-

uration file and data file as well as a default value to fall back to. This ensures a unified

structure of the GetProperty method and provides for adding new properties by creating a

new BuilderKey object with the appropriate three arguments.

template <typename OptionType>

struct BuilderKey {

BuilderKey(std::string ini_path, std::string hdf5_path,

OptionType default_value)

: IniPath(ini_path), HDF5Path(hdf5_path), DefaultValue(default_value)

{

}

const std::string IniPath; // Path in configuration file

const std::string HDF5Path; // Path in data file

const OptionType DefaultValue; // Fallback default value

};

What is left for the templated builder is then to define the GetProperty method. This is

shown here for the BuilderIni which reads the configuration file.

class BuilderIni

{

public:

// Read ini file on construction.

BuilderIni(std::string filename);

// Retrieve a property from the ini file.

template <class OptionType>

inline OptionType GetProperty(BuilderKey::BuilderKey<OptionType> key) const

{

return fPropertyTree.get(key.IniPath, key.DefaultValue);

}

...

private:

// Tree storing all the options read from the ini file.

boost::property_tree::ptree fPropertyTree;

};

The structure of the ini file which is read is shown below.
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[Detector]

; Efficiency of the detector

Efficiency = 0.9

; Number of pixels the detector is divided in

NPixels = 148

; Pixels used for the analysis

;

; Pixels are indexed from 0. The largest number must therefore be smaller than

; (NPixels - 1). Pixels not listed here are excluded from the analysis. It is

; possible to define ranges, e.g. 0-147 and comma separated values, e.g. 1,2.

; Combining both is possible. '*' means activate all pixels.

;

; Full example: ActivePixels = 0-120,122,123

ActivePixels = *
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Appendix D

Monte Carlo Generator for KATRIN

At the beginning of the work on this thesis, a Monte Carlo (MC) generator for the KATRIN

experiment was developed. A MC generator produces artificial data sets that look like the

real ones by simulating the model theoretically and applying statistical smearing. The use

cases for such a tool include testing the fitting tools and investigating the effect of various

systematics on the neutrino mass measurement.

An overview of the working principle is shown in figure D.1. The theoretical model used

by the MC generator is SSC (Source and Spectrum Calculation) [31, p. 85]. Configuration

of model and other parameters is done using an initialization file very similar to the one of

Fitrium.

First, the so called “run plan”, must be defined. It contains information describing how

much measuring time is spent at which retarding potential. The model now calculates the

expected rate for each retarding energy and multiplies it with the measuring time. This

average number of counts is fluctuated randomly using a Poisson distribution to retrieve

the Monte Carlo data set. The data set is then written to a run summary file which can be

converted to HDF5 for Fitrium.

The developed MC generator was successfully used for testing fitting tools, not only Fitrium.

Most of the functionality has been merged with the Fitrium package where the underlying

model is no longer SSC.
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RunPlanGenerator Model

MCGeneratorOutputWriter

Run Summary HDF5 File

Run Plan

“True” Data

Randomized Data

W
rites

Converted to

Figure D.1: Structure of the MC Generator. A run plan is passed to the model which calculates the

average counts for every retarding energy. This data is fluctuated and the retrieved

counts with all the other information is written to the run summary. It is possible to

convert the run summary to the HDF5 format.
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Appendix E

Additional Figures

Here additional figures that are not required for the understanding of the thesis but illustrate

the capabilities of the plotting tool Plotrium are displayed.
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A S
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Figure E.1: Correlation of effective endpoint and normalization. The points correspond to the fit

result of single pixel fits of runs 40 667 to 40 693 appended, statistical uncertainty only.

The correlation of −0.75 is Pearson’s correlation coefficient.
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