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Zusammenfassung

Das Neutrino wurde erstmals von W. Pauli im Jahre 1930 postuliert [PKW64]. Er sagte
damals schon voraus, dass das Neutrino sehr schwer nachzuweisen sei, weil es nur über die
schwache Wechselwirkung mit anderen Teilchen interagiert. Als die Existenz des Neutrinos
jedoch ca. ein Vierteljahrhundert später nachgewiesen wurde [RC53], war der Weg frei für
die Neutrinophysik. Während das Neutrino im Standardmodell der Teilchenphysik keine
Masse besitzt, haben Experimente um die Jahrtausendwende Neutrino Flavor-Oszillationen
nachgewiesen (Kapitel 2). Für diese bahnbrechende Entdeckung wurde 2015 der Nobel-
preis in Physik verliehen [Nob18]. Dieses Phänomen zeigt, dass Neutrinos eine nicht
verschwindende Masse besitzen müssen, jedoch kann in diesen Oszillationsexperimenten
die absolute Masse des Neutrinos nicht bestimmt werden. Der herausfordernde Nachweis
dieser kleinen Neutrinomasse würde Einblicke in fundamentale Fragen der Astroteilchen
Physik geben: Warum besteht das Universum zum Großteil aus Materie und nicht aus
Antimaterie, wie hat das Neutrino als häu�gstes Teilchen den strukturbildenden Prozess
des Universums beein�usst?

Die derzeitig stringentesten oberen Limits auf die Elektron-Antineutrino-Masse aus di-
rekten Messungen kommen von den Experimenten in Mainz und Troitsk, welche mit
Hilfe von hochau�ösender Tritium-β-Spektroskopie die Form des Energiespektrums der
Elektronen nahe des Endpunktes abtasten. Das derzeitige Limit von 2 eV stammt aus einer
kombinierten Massenanalyse dieser beiden Experimente [TH18]. Das KArlsruhe TRItium
Neutrino experiment (KATRIN) (Kapitel 3) macht sich das gleiche Messprinzip zum Vorteil
und wurde gebaut, um die Elektron-Antineutrino-Masse mit einer bisher unerreichten
Sensitivität von 0,2 eV bei 90 % C.L. zu messen [KAT05]. Die Basis um diese noch nie
dagewesene Sensitivität zu erreichen bildet ein verbessertes und hochau�ösendes MAC-E-
Filter-Modul, gepaart mit einer hoch aktiven Quelle von Tritium-β-Zerfallselektronen um
diese Sensitivität in einer angemessenen Zeit zu erreichen. Da nur ein winziger Bruchteil
der Signalelektronen nahe des Endpunktes der Energieverteilung wichtige Informationen
über die Neutrinomasse trägt, ist ein niedriger Untergrund in den Spektrometern unab-
dingbar. Hierfür ist ein detailliertes Verständnis der Untergrund erzeugenden Prozesse
notwendig.

Seit Inbetriebnahme des Vorspektrometers gab es erfolgreiche Studien über MAC-E-Filter-
abhängige Untergrundprozesse, wie Penning-Fallen oder myon- und radoninduzierte
Ereignisse (Kapitel 4). Eine mögliche Untergrundquelle ist Tritium, das von der Quelle
entweder in molekularer Form (HT, T2) in den Spektrometerbereich di�undiert oder als
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Ionen von den magnetischen Feldern geführt wird. Der Zerfall eines Tritiumatoms im
magnetischen Flussschlauch der Spektrometer führt zu einem Elektron, welches bis zu
18,6 keV kinetische Energie besitzt und deshalb mit hoher Wahrscheinlichkeit aufgrund
der MAC-E-Filter-Eigenschaften in einem der Spektrometer gespeichert ist. Durch Streu-
ungen an Restgasmolekülen kann dieses dort bis zu mehrere hundert Sekundärelektronen
erzeugen. Diese hinterlassen auf dem Detektor eine charakteristische Clustersignatur. Die
gleiche Signatur wurde schon bei Elektronen mit Energien von mehreren keV beobachtet,
die begleitend zu Radonzerfällen entstehen. Um den Beitrag des radoninduzierten Unter-
grund zu erkennen und abzuschätzen, wurde ein Clusteralgorithmus zusammen mit einer
Messung bei künstlich erhöhtem Druck durch Argon oder Helium verwendet.

In dieser Arbeit wird ein neuer Ansatz zur Clustererkennung mit Hilfe von statistischen
Lernmethoden verfolgt (Kapitel 5). Indem ein sogenannter Trainingsdatensatz unter Ein-
beziehung von Messungen und Simulationen konstruiert wird, können die Parameter der
Algorithmen angepasst werden um verbesserte Klassi�zierungsergebnisse zu erzielen.

Charakteristische Eigenschaften von Clusterereignissen sind Spitzen in der Rate und
eine Erhöhung der Häu�gkeitsverteilung der Zeiten zwischen zwei Ereignissen. Eine
weitere Eigenschaft in der Häu�gkeitsverteilung der Radiusdi�erenzen zwischen zwei
Ereignissen konnte im Zuge dieser Arbeit aufgezeigt werden (Kapitel 6). Während für die
Enthüllung der bereits bekannten Eigenschaften ein erhöhter Druck in den Spektrometern
nötig ist, ist diese neue Eigenschaft auch bei niedrigem Druck präsent. Sie kann deshalb
nicht nur dazu benutzt werden um die Anwesenheit von Clusterereignissen robuster zu
indizieren, sondern dient auch als E�ektivitätsmaß für die Detektion durch Clusteralgo-
rithmen. Diese Algorithmen werden verwendet um den Anteil an Radon, das aus den
Getterpumpen des Vorspektrometers in das Hauptspektrometervolumen strömt, während
der SDS3-Chrismas-Messungen abzuschätzen (Kapitel 6). Mit Hilfe der neuen Algorithmen
kann dieser Beitrag genauer abgeschätzt und die Entscheidung erleichtert werden, ob das
Gettermaterial im Vorspektrometer entfernt werden soll um den Untergrund des Haupt-
spektrometers während der Langzeit-Neutrinomassen-Messung zu senken. Abschließend
werden die Ergebnisse von Untergrundreferenzmessungen im Vorspektrometer dazu ver-
wendet, den Ein�uss und die Menge von tritiuminduziertem Untergrund abzuschätzen.
Die Arbeit schließt mit einer kurzen Zusammenfassung und einem Ausblick über mögliche
Verbesserungen (Kapitel 7).
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1 Introduction

The neutrino as an elementary particle was �rst postulated in 1930 by W. Pauli [PKW64].
He claimed that the existence of this particle would be di�cult to observe, as it only takes
part in the weak interaction. When it was found a quarter century later by [RC53], the
journey of experimental neutrino physics started. While it was �rst assumed that the
neutrino is massless, experiments around the turn of the millennium observed neutrino
�avor oscillations. This phenomenon shows that neutrinos have non-vanishing masses
(chapter 2). For this ground-breaking revelation, the Nobel Prize in physics was awarded
in the year 2015 [Nob18]. However, these experiments do only prove that neutrinos have
mass, but not the absolute value of it. The determination of the absolute mass would
shed light into fundamental questions of astroparticle physics: Why is it that we live in a
matter dominated universe today? How is the structure formation process in the universe
in�uenced by its most abundant particle, the neutrino?

The current most stringent upper limits from direct observations on the electron-antineutrino
mass come from experiments in Mainz and Troitsk, which precisely measure the electron’s
energy spectrum from tritium β-decay close to its endpoint. In a combined analysis they
state an upper mass limit of 2 eV. The KATRIN experiment (chapter 3) utilizes the same
measurement principle as its predecessors in Mainz and Troitsk and was built to measure
the electron antineutrino mass with an unmatched sensitivity of 200 meV at 90 % C.L.
[KAT05]. The key point to achieve this novel sensitivity is the high energy resolution of
the Magnetic Adiabatic Collimation with Electrostatic �lter (MAC-E �lter) module, paired
with a high luminosity source of tritium β-decay electrons. As only a tiny fraction of
the signal electrons close to the energy spectrum’s endpoint carries information about
the neutrino mass, an ultra low background within the spectrometer section is required.
Therefore detailed knowledge of the background generating processes is vital.

There have been successful studies about MAC-E �lter related background processes
such as Penning discharge, muon- and radon induced events, from the commissioning
of the Pre-Spectrometer (PS). A possible background source in future neutrino mass
measurements is tritium, which can di�use from the source into the spectrometer section
as molecules (HT, T2), or can be magnetically guided as ions. A tritium decay in the
spectrometers �ux tube results in a <18.6 keV electron, which may likely be stored in the
�ux tube due to the MAC-E �lter properties. There it can create up to several hundreds of
secondary electrons by scattering o� residual gas molecules. These secondary electrons
leave a characteristic cluster signature on the Focal-Plane Detector (FPD) (chapter 4).
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1. Introduction

These clusters have also been observed from radon decay accompanied emissions of
electrons with keV energies. In order to estimate this background contribution, a cluster al-
gorithm paired with a measurement of the background at elevated pressure was developed.
At elevated pressure, the mean time between scattering processes is shorter and therefore
cluster events can be distinguished from other background events by their di�erent time
scale.

In this work, a novel approach to identify cluster events utilizing statistical learning
algorithms is presented in chapter 5. In order to train and evaluate the algorithms, a
hybrid training data set was constructed of both measurement data and simulations. This
unique training data set allows the tuning of the algorithm’s input parameters to provide
unmatched classi�cation results.

The properties of data hinting the presence of cluster events are spikes in the rate trend
of events, and a surplus of the distribution of the time di�erence of consecutive events
at short times. In the course of this work, another feature indicating cluster events is
discovered in the distribution of the radii di�erence of consecutive events (chapter 6).
While for the former properties an elevated pressure was necessary to reveal them, this
feature is also present at low pressures. It can therefore be used to not only indicate the
presence of cluster events in a robust way, but also as a measure for the e�ectiveness of a
cluster detection algorithm. These algorithms are then used to estimate the in�uence of
radon emanating from the Non-Evaporable Getter (NEG) pumping material of the PS into
the Main Spectrometer (MS) (chapter 6). This provides an answer to the question whether
the NEG pumps could be de-installed in the PS to decrease the MS background rate for the
long-term neutrino mass measurements. Furthermore, dedicated reference background
measurements in the PS are used, to estimate the impact of the background contribution
due to tritium decays, as well as the number of corresponding tritium atoms. The thesis
closes with a summary and an outlook on possible future improvements (chapter 7).
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2 Neutrino physics

The objective of this chapter is to put the direct neutrino mass experiment KATRIN
into the context of several decades of neutrino physics. It took about three decades to
experimentally prove the existence of the neutrino, after its postulation by W. Pauli in
1930, with the famous Poltergeist experiment (section 2.1.1). There, in the year of 1956, the
exciting journey of experimental neutrino physics started, revealing two more neutrino
�avors up till now. In the Standard Model of Particle Physics (SM) (section 2.1.2), the
neutrino is massless. However, experiments around the turn of the millennium discovered
neutrino oscillations and therefore established, that neutrinos are not massless. This
ampli�ed the e�orts of neutrino mass measurements (section 2.3), which up to today only
constrain the neutrino mass.

2.1 History of the neutrino
The neutrino was introduced the �rst time in 1930 by Wolfgang Pauli. He added a third
particle to the products of the β-decay to explain the continuous energy spectrum and
therefore save energy and momentum conservation

A
ZX →

A
Z+1 Y + e

− + ν̄e . (2.1)

The electron can now share the constant decay energy with this particle and therefore has
a continuous energy spectrum. To ful�ll charge and spin conservation, the particle needs
to have charge 0 and spin 1/2. Therefore Pauli named the particle neutron.
However, two years later the neutron was discovered by Chadwick [Cha32]. It was E.
Fermi, who picked up the idea of Pauli and came up with a �rst theoretical description of
the β-decay, naming the neutral particle "neutrino".

2.1.1 Discovery
With the invention of nuclear �ssion reactors, the �rst strong (anti-) neutrino source was
developed. Cowan and Reines utilized this occasion and built a detector close to a �ssion
reactor in Los Alamos, after reconsidering their �rst idea to use a nuclear �ssion bomb
as a source [RC97]. To detect the incoming antineutrinos, they used alternating layers of
water as proton donators and liquid scintillator material. The protons of hydrogen nuclei
in H2O can react with the antineutrinos in an inverse β-decay into a positron and neutron

ν̄e + p
+ → n + e+. (2.2)

The positron can then annihilate with any available electron in water quasi instantly
into a pair of photons, each with an energy of the electron’s rest mass (511 keV, prompt
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2. Neutrino physics

signal), the neutron gets moderated in the water. Additionally, CdCl2 is solved in the
water. This cadmium then captures the neutron and cools down to its ground state via
photon emission (delayed signal). The produced photons can lose energy due to Compton
scattering and ultimately being absorbed by the scintillator material at UV energies. The
excited scintillator molecule then returns to its ground state under the emission of photons
in the visible region. These photons can then be detected by the mounted Photo Multiplier
Tubes (PMTs). The characteristic time di�erence between the prompt and delayed signal is
then evidence for the inverse β-decay (equation 2.2). In 1956, Cowan and Reines published
their results and claimed the detection of antineutrinos from inverse β-decays [RC53].
Several years later, in 1962, the muon neutrino was found as a second type by Schwartz,
Lederman and Steinberger at Brookhaven National Laboratory (BNL). They used pions
from a nearby accelerator, which decay in �ight, due to their small lifetime, into a pair of
muon and muon neutrino

π± → µ± +
(−)

νµ . (2.3)

These muons, as well as other remaining particles, are then absorbed by a thick iron
shielding. The only particles passing through this layer are neutrinos. In the detector
these neutrinos created exclusively muons and no electrons, which means that the muon
neutrino is di�erent from the electron neutrino [DG62].
Finally, in the year 2001, the last neutrino �avor ντ in the Standard Model was detected
by the DONUT collaboration. Unstable DS mesons, produced by an 800 GeV proton beam
dumping on a tungsten target, decay purely leptonical into a tauon tau-antineutrino pair.

DS → τ + ν̄τ (2.4)

The ντ then can pass through a shield for all other particles and hit the detector. There they
can produce tauons, which are detected via their characteristic kinematic decay signal, a
kink [Kod01].

2.1.2 Standard Model of Particle Physics
The SM describes all known modules of matter and their interactions (besides gravity).
The gauge group the SM is based on, is given by an SU (3)C ×SU (2)L×U (1)Y . Hereby, every
symmetry comes along with a conservation law. In Quantum Chromo Dynamics (QCD),
described by the SU (3)C , the conserved observable is the color charge. Its force carriers
are eight massless gauge bosons, the gluons. They can couple exclusively to the quarks
and among themselves, because only they carry color charge. The remaining four gauge
bosons (γ ,Z,W±) are the force carriers of the electro-weak theory, with the gauge symmetry
SU (2)L×U (1)Y . This theory was introduced independently by Salam [Sal68] and Weinberg
[Wei67], to combine the weak interaction SU (2) with the electro-magnetic interaction
U (1). The force carriers of the weak interaction are the gauge bosons Z, and W±, which
couple to the weak isospin. The force carrier of the electro-magnetic interaction is the
γ , which couples to the electric charge. The neutrino is standing out in the SM among
the other particles: it is the only particle which carries neither color nor electric charge

4



2.2. Neutrino oscillations
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Figure 2.1.: The Standard Model of Particle Physics (SM) containing the three genera-
tions of matter particles, the gauge bosons, and the Higgs boson. Their masses
are given, or in case of the neutrinos, their upper limit [TH18].

and therefore interacts exclusively via the weak interaction. This makes their detection a
challenging e�ort.

2.2 Neutrino oscillations
Although the SM has performed quite well, it does have some open issues such as the
impossibility of describing gravity. But also, the neutrino is massless in the SM. However,
recent experiments measuring the solar neutrino �ux [Aha13] and atmospheric neutrino
�ux [Wen10] have proven that neutrinos have a fascinating property, namely oscillations.
A similar feature is shown by the quarks, where the three �avor generations mix via the
interaction with a W boson. This leads to a mixing matrix called Cabibbo-Kobayashi-
Maskawa (CKM) matrix. Analogously, in neutrino physics there is the Pontecorvo-Maki-
Nakagawa-Sakata (PMNS) matrix, which describes the �avor mixing. For the experimental
evidence of neutrino oscillations, Arthur B. McDonald and Takaaki Kajita received the
Nobel Price in physics in 2015.

2.2.1 Theory
The possibility of neutrino �avor mixing was �rst described by Pontecorvo [Pon58], Maki,
Nakagaya and Sakata [MNS62]. They came up with a theory, in which the neutrinos are
created or destroyed in their �avor eigenstates, but propagate through space and time in
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2. Neutrino physics

their mass eigenstates. Therefore, the �avor eigenstates can be described as a superposition
of mass eigenstates ν

νj =
∑
i

Cijνi , j = e, µ,τ (2.5)

where Ci,j is the PMNS matrix, which can be factorized into

C =
©«
1 0 0
0 c23 s23
0 −s23 c23

ª®¬ ©«
c13 0 s13e

−iδD

0 1 0
−s13e

−iδD 0 c13

ª®¬ ©«
c12 s12 0
−s12 c12 0

0 0 1

ª®¬ ©«
1 0 0
0 eiδM1 0
0 0 eiδM2

ª®¬ , (2.6)

where sij = sinθij and cij = cosθij [TH18]. This matrix features three mixing angles θij ,
one Dirac phase δD and two Majorana phases δM , which can cause CP violation and are
important for studying double-beta decay experiments.
While propagating, the neutrino �avor eigenstates become a superposition, due to the
di�erent masses of the mass eigenstates, which results in di�erent oscillation frequencies.
For reasons of simplicity, the phenomenon will be described in a 2 × 2 space, and not in
3 × 3. When considering the oscillation between νµ and ντ , with one mixing angle θ , and
two mass eigenstates ν2,ν3 the equation becomes(

νµ
ντ

)
=

(
cosθ sinθ
− sinθ cosθ

) (
ν2
ν3

)
. (2.7)

By using the ansatz for the mass eigenstates |νi〉 = |νi(0)〉 exp(−iωit) in natural units
~ = c = 1→ ω = E, and using the constraint, that the masses are much smaller than the
energy

Ei = p +
m2

i

2p , (2.8)

the probability of νµ staying νµ becomes

P(νµ → νµ) = 1 − sin2 2θ · sin2
(
1.27∆m

2L

E

)
. (2.9)

Here, L is the oscillation length in km, ∆m2 = m2
3 −m

2
2 the di�erence of the squared

masses in (eV/c2)2 and E the energy in GeV. The numerical factor 1.27 arises from the
transformation back to SI units, 1.27 = 1

4~c . In �gure 2.2, equation 2.9 is visualized at the
top and the oscillation of the mass eigenstates at the bottom.
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2.2. Neutrino oscillations
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Figure 2.2.: Neutrino oscillation with two �avors. Here the neutrino mixing angle is
assumed to be maximal, θ = 45◦. In the top, the probability in the disappearance
channel νµ → νµ is shown, on the bottom the oscillation of the di�erent mass
eigenstates ν2,3.

2.2.2 Discovery
To experimentally access the three di�erent mixing angles θij , and mass di�erences ∆m2

ij ,
di�erent neutrino sources have to be used:

• θ12: Solar neutrinos

• θ13: Reactor/accelerator neutrinos

• θ23: Atmospheric/accelerator neutrinos

In general, the experiments set up to study these di�erent sources either make use of
a variable source-target length (atmospheric reactor experiments) or scan the energy
dependent disappearance of (muon) neutrinos (accelerator). In table 2.1, recent results of
neutrino oscillation parameter �ts can be found.

Solar neutrino experiments
The results from radio-chemical experiments like the Homestake experiment [CD98] and
GALLEX [AH93] provided �rst hints for solar neutrino oscillations. They measured a
de�cit in the solar neutrino �ux, when comparing measurement results to the predicted
�ux by Bahcall’s Standard Solar Model (SSM) [Bah64]. However, the evidence that this
neutrino de�cit comes from �avor oscillations was provided by the Sudbury Neutrino
Observatory (SNO) experiment. They used 1000 tons of heavy water (D2O) to detect
interactions of solar neutrinos with D2O via Cherenkov radiation.

7
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Figure 14.11: The zenith angle distributions for fully contained 1-ring e-like
and µ-like events with visible energy < 1.33 GeV (sub-GeV) and > 1.33 GeV
(multi-GeV). For multi-GeV µ-like events, a combined distribution with partially
contained (PC) events is shown. The dotted histograms show the non-oscillated
Monte Carlo events, and the solid histograms show the best-fit expectations for
νµ ↔ ντ oscillations. (This figure is provided by the Super-Kamiokande Collab.)

14.11.2. Octant of θ23 :

The two-flavour νµ survival probability in vacuum P 2ν(νµ → νµ) is given by Eq. (14.53)
with l = µ, θ = θ23 and ∆m2 = ∆m2

31. It is symmetric in the mixing angle θ with
respect to θ = π/4, or degenerate with respect to the interchange θ ↔ π/2 − θ. In other
words, in the leading order the νµ disappearance is not sensitive to the octant of the
mixing angle θ, namely, whether θ lies in the first octant (θ < π/4) or in the second octant
(θ > π/4). This is the reason why sin2 2θ23 has been used in the neutrino oscillation
literature until recently. However, as the mixing determined by the angle θ23 is known
to be nearly maximal, it is important to determine whether θ23 = π/4, or if not, in
which octant θ23 lies. As we have seen in Section 14.8, the value of sin2 θ23 plays a very
important role in the determination of the neutrino mass ordering in the experiments with
atmospheric neutrinos and in long baseline neutrino oscillation experiments. It is also one
of the important parameters in the interpretation of the data on CP violation in neutrino
oscillations. The value of θ23 might be related to the existence of a new underlying
fundamental symmetry of the neutrino mixing matrix and of the lepton sector of particle
physics (see, e.g., the first three articles quoted in Ref. [96]) . Precise determination of
θ23 requires, e.g., precise measurements of νµ disappearance and analyses in terms of

March 28, 2018 12:54

Figure 2.3.: Distribution of e and µ-like events in SuperK in dependence of the
zenith angle with visible energy <1.33 GeV (Sub-GeV) and >1.33 GeV (Multi-
GeV). The dotted lines represents predictions from MC simulations for the
no-oscillation case, the black dots the measured data and the red line the best
�t expectation for νµ ↔ ντ oscillations. Figure taken from [TH18].

The main di�erence to radio-chemical experiments like the Homestake experiment, which
are sensitive to Charged-Current (CC) interactions exclusively, is the additional sensitivity
to Neutral-Current (NC) reactions and elastic scattering (ES)

νe + d → p + p + e− (CC), (2.10)
νx + d → p + n + νx (NC), (2.11)
νx + e

− → νx + e
− (ES). (2.12)

With these combined reactions, the SNO collaboration could solve the solar neutrino de�cit
and provide evidence that νe as a product of the fusion reactions in the sun do oscillate
into νµ and ντ inside the sun (MSW e�ect [MS85]).

Atmospheric neutrino experiments
The �rst compelling evidence of atmospheric neutrino oscillations was given by the Super-
Kamiokande experiment in 1998 [FH98]. They used a detector �lled with 50-ktons of
water to detect electron and muon neutrinos. These neutrinos can scatter with the water-
molecules and produce high energy electrons or muons, whose Cherenkov radiation is
detected by PMTs. They reported a signi�cant de�cit of µ-like events compared to the
no-oscillation expectation, in dependency of the zenith angle, see �gure 2.3. These results
could later be con�rmed by other atmospheric neutrino experiments like MACRO [The04].
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2.2. Neutrino oscillations

Reactor/Accelerator neutrino experiments
Finally, man-made sources of neutrinos can be used to study their oscillation behavior. In
accelerators, proton-proton collisions produce a large number of charged pions, which
decay into muons (equation 2.3). A detector close to the beam dump allows for calibration,
whereas the main detector is usually several kilometers away from the target. Because
the baseline length is usually �xed in accelerator experiments, the energy dependent
disappearance of (muon) neutrinos is utilized to study the oscillation parameters θij and
∆m2

ij .
In comparison to accelerators, nuclear �ssion reactors do not only provide a strong source
of neutrinos, but also exist more frequently. An example to mention here is the KamLAND
experiment in Japan, which by the time of data-taking was surrounded by 53 commercial
nuclear �ssion reactors within di�erent distances to the detector. However, as the energy
of neutrinos produced in nuclear �ssion reactions is in the few MeV range, these detectors
exclusively look for oscillations in the ν̄e disappearance channel.
Instead of using di�erent reactors, more recent experiments, such as Daya Bay, make use
of an combination of near and far detectors, in order to deliver more stringent limits on
the mixing angle θ13. This mixing angle is much smaller (table 2.1) than the other two
mixing angles and plays a crucial role in determining whether there is CP violation in the
lepton sector and the resolution of the mass hierarchy [CL16].
Neutrino mass ordering
While decades of neutrino oscillation experiments shed light into the squared mass dif-
ferences, the absolute mass scale, and the sign of ∆m2

13 is still unknown. This allows
for two di�erent neutrino spectra. The spectrum with Normal Ordering (NO), where
m1 < m2 < m3 and the spectrum with Inverted Ordering (IO), where m3 < m1 < m2,
which are illustrated in �gure 2.4.

To investigate the absolute scale of the neutrino masses, a di�erent approach to neutrino
oscillation measurements is needed. These experiments, called neutrino mass experiments,
will be introduced in the following section.
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Figure 2.4.: Two di�erent neutrino mass ordering scenarios. The left part shows the
NO, where sign(∆m2

13)=−1 and the right part the IO, where sign(∆m2
13)=+1

Table 2.1.: Recent results of global neutrino oscillation parameter �ts from [TH18].
The data listed here assumes normal ordered mass hierarchy. For inverted
hierarchy parameters as well as the CP-violating phase, see [TH18].

Parameter best �t 3σ
∆m2

12 [10−5 eV2] 7.37 6.93 - 7.96
∆m2

31(23) [10−3 eV2] 2.56 (2.54) 2.45 - 2.69 (2.42 - 2.66)
sin2 θ12 0.297 0.250 - 0.354
sin2 θ23 0.425 0.381 - 0.615
sin2 θ13 0.0215 0.0190 - 0.0240
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2.3 Neutrino mass experiments and constraints
The experiments described in this section focus on solving two of the most urgent questions
in neutrino physics: Is the neutrino its own antiparticle and what is the absolute scale
of the mass ordering? The most prominent theory of neutrino mass generation will be
described brie�y in the following.
The see-saw mechanism (type I) provides a natural theory to explain the smallness of
neutrino masses, and therefore a smaller coupling to the Higgs �eld, compared to lepton
and quark masses. A Right-Handed (RH) neutrino singlet is introduced, which has a
Majorana mass term and couples to the SM lepton and Higgs doublets via Yukawa type
coupling. After spontaneous symmetry breaking of the electro-weak scale, the mass term
can be written as see e.g. [Kla18]

L = −
1
2 (ν̄Lν̄

c
R)M(ν

c
LνR)

T + h.c., (2.13)

where superscripts R,L denote RH and Left-Handed (LH) chirality, and c the charge
conjugate.

M =

(
mL

M mD

mD mR
M

)
(2.14)

is the mass matrix, where D,M denotes the Dirac and Majorana mass respectively. Assum-
ing the mass hierarchy needed for the see-saw mechanism MM =m

R
M >> mD > m

L
M ≈ 0,

the mass matrix reduces to [SV80]

M =

(
0 mD

mD MM

)
. (2.15)

The corresponding eigenvalues analysis to get from equation 2.14 to 2.15 will give the
mass eigenstates with masses

m1 =
m2

D

MM
(2.16)

m2 = MM , (2.17)

wherem1 is a very light eigenstate andm2 a heavy one.
The naming convention "see-saw" becomes visible for the eigenvalue λ = 0 by

mL
Mm

R
M =m

2
D, (2.18)

which means for a �xed value ofmD , a rise inmR
M corresponds to a lowering ofmL

M .
In order to get a better understanding of the neutrino mass generation process, it is
necessary to experimentally con�rm the Majorana character of the neutrino.
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Figure 2.5.: Double beta-decay properties. a): Mass excess E as a function of proton
number Z . This sketch shows that in some rare cases single β-decay is ener-
getically forbidden. b): Feynman graph of 0νββ-decay. c): Sketch of energy
spectra of 2νββ-decay (blue) and 0νββ-decay in magni�ed size (red).

2.3.1 Cosmology
Since large amounts of neutrinos originate from their freeze out1 from thermal equilibrium
shortly (10−9 s) after the Big Bang, they had a major impact on structure formation on
large scales. While travelling the universe, the initial relic neutrinos with a temperature
of ≈ 1 MeV can smear out small perturbations of matter density by carrying matter with
them. The current model dependent upper limits on the sum of neutrino masses from
experiments measuring the matter distribution in the universe, is [TH18]∑

i

mν ,i < 0.12 − 0.73 eV. (2.19)

For more detailed information, the reader is referred to [Wei08].

2.3.2 Neutrinoless double β-decay experiments
The information presented in this section was gathered with the help of [Per09]. If the
neutrino is a Majorana particle, the lepton number L is violated, since the neutrino (L = 1)
and its antiparticle, the antineutrino (L = −1), are identical. So in order to prove the
Majorana nature of the neutrino, lepton number violating processes need to be studied.
Such a process is the so-called neutrinoless double beta decay (0νββ). From single β-decay,
it is known that the electron is accompanied by an antineutrino (equation 2.1). If two
of these processes occur simultaneously (2νββ), the decaying nucleus will transform
according to

(Z ,A) → (Z + 2,A) + 2e− + 2ν̄e . (2.20)

The probability of these second order weak processes scales with G4
F , is therefore very

rare and occurs only for even-even nuclei numbers (�gure 2.5a). In addition, two more
conditions need to be ful�lled: The single β-decay must be energetically forbidden, which

1Expansion of the universe ΓH is faster than the collision rate Γ. Detailed information in [GG91].
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2.3. Neutrino mass experiments and constraints

is usually the case due to the odd-even e�ect of the mass. Furthermore, energy conservation
requires M(Z ,A) > M(Z + 2,A) + 2me .
A 0νββ (�gure 2.5b) can be thought of as a two staged process: First, an antineutrino
is emitted due to β-decay. Second, the RH antineutrino switches to a LH neutrino and
initiates a second decay with the daughter nucleus (Z + 1,A) + νe → (Z + 2,A) + e−

(Z ,A) → (Z + 2,A) + 2e−. (2.21)

For neutrinos having mass, the probability of an antineutrino being emitted as a neutrino is
given by ≈ (mνc

2)2

2E2 . Therefore the 0νββ-decay is even unlikelier than the 2νββ-decay and
theoretically shows up as a discrete line in the summed energy spectrum of the electrons.
However, detectors with high �ducial mass/volume are commonly used, whose energy
resolution smear out the discrete line (�gure 2.5c). Up to now, no experiment was able
to observe 0νββ-decay. The keys to success of experiments searching for 0νββ-decay
are a large mass M , long exposure time t and a high energy resolution combined with
a low background. The GERmanium Detector Array (GERDA), located at Gran Sasso
underground laboratory (LNGS), Italy, searches for 0νββ-decay of 76Ge using germanium
detectors enriched with a fraction of 76Ge, operated in a liquid argon bath for background
suppression. The germanium array serve as both source and detector. Another experiment,
also utilizing 76Ge, is the MAJORANA experiment. Together these two experiments plan
to collaborate for a future tonne scale 76Ge 0νββ search [AB18a]. The current upper limit
of the lifetime is set to t1/2 > 1025 years, which corresponds to an e�ective weighted sum
of Majorana neutrino masses of

〈mν 〉 =
∑
i

��U 2
eimνi

�� < 0.11 − 0.52 eV. (2.22)

These limits are taken from [TH18].

2.3.3 Single β-decay experiments
A direct way to measure the neutrino mass is by precisely measuring the kinematics of
the single β-decay (�gure 2.6a)

(Z ,A) → (Z + 1,A) + e− + ν̄e . (2.23)

A non vanishing neutrino mass a�ects the shape of the electron’s energy spectrum,
especially leading to a �ne splitting near the endpoint of the spectrum for di�erent
neutrino masses (�gure 2.6b). The di�erential spectrum close to the endpoint is given by

dN
dE = C · F (E,Z ) · pe · (Ee +mec

2) · (E0 − Ee) ·

√
(E0 − E)2 −

∑
i

|Uei |
2m2

νi , (2.24)

where pe ,Ee ,me denote the momentum, kinetic energy, and mass of the emitted electron.
F (E,Z ) is the Fermi function, which takes into account the Coulomb interaction of the
outgoing electron with the daughter nucleus, and E0 is the endpoint energy for a vanishing
neutrino mass.
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Figure 2.6.: Single beta decay properties. a): Feynman graph of single beta decay. b):
Sketch of an energy spectrum of electrons, emitted by single beta-decay. The
zoomed in �gure shows the di�erence between a zero neutrino mass spectrum
(blue) and a non-vanishing neutrino mass spectrum (red).

Subsequently, (E0 − E) is the total energy of the neutrino and
∑

i |Uei |
2m2

νi = 〈mβ〉
2 gives

the weighted average of all neutrino �avors and is called the e�ective electron antineutrino
mass. This theoretically would lead to tiny distortions near the endpoint of the energy
spectrum, however due to the small mass splittings O

(
10−3 eV2) , state of the art energy

resolutions of single β-decay experiments are not able to resolve these distortions. The
constant C is given by

C =
G2
F

2π 3 cos2 θC |M |
2, (2.25)

where GF is the Fermi constant, θC the Cabbibo angle describing the strength of the
transition from a down to an up quark (neutron to proton), and |M | the nuclear matrix
element.
In order to achieve a high sensitivity on the neutrino mass, single β-decay experiments
need to gather high statistics in the endpoint region, which usually requires nuclei with a
short life-time, as well as a low Q value1. Furthermore, the energy resolution needs to be
sensitive to small distortions near the endpoint of the spectrum and the experiments need
an overall high signal-to-background ratio, meaning well studied background sources as
well as methods to suppress them.
Most stringent upper limits on the neutrino mass come from experiments utilizing tritium
β-decay. Tritium has not only the third lowest endpoint energy (after holmium and
rhenium) with E0 ≈ 18.6 eV, but also a rather short half-life of t1/2 ≈ 12.33 ± 0.03 years
[LU00]. This is the key feature for a high-statistics measurement near the endpoint. The
combined analysis of KATRIN’s predecessor experiments in Mainz and Troitsk provide
the most sensitive upper limit by now on the e�ective mass of the electron antineutrino
[TH18]

mν̄e < 2 eV (95 % C.L.). (2.26)

1amount of energy released in the decay.
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2.3. Neutrino mass experiments and constraints

The KATRIN experiment has the ambitious goal to improve this limit by one order of mag-
nitude. To achieve this sensitivity, KATRIN uses the experience and technology developed
by these experiments such as the successfully implementation of a Windowless Gaseous
Tritium Source (WGTS) and the MAC-E �lter principle. However, KATRIN still faces a lot
of challenges, especially concerning systematics. Current issues are the the Final States
Distribution (FSD) of the daughter nuclei, plasma e�ects of the electrons in the WGTS,
and the magnetic �eld in the analyzing plane.

A next generation direct neutrino mass experiment named Project 8, tries to overcome
the issues with the FSD by using atomic tritium combined with the cyclotron radiation
emission spectroscopy technique (CRES) to push the limits of neutrino mass observation
down tomν̄e . 40 meV [Ash17].

An isotope which is also regarded as a promising candidate for neutrino mass deter-
mination is 163Ho. Experiments such as ECHo measure the energy spectrum emitted by
electron capture of holmium, to access the electron neutrino mass in the sub-eV range.
The working principle of a small scale detector has already been demonstrated and the
experiment currently aims for a sub 10 eV (ECHo1k) range. In the future the detector will
be scaled up to reach sub-eV level (ECHo1M) [GB17].
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3 The KATRIN experiment - towards a
high precision ν mass measurement

The KATRIN collaboration was founded in 2002 with the goal, to be a next generation
neutrino mass experiment and increase the sensitivity by one order of magnitude compared
to its predecessors in Mainz and Troitsk. To achieve this goal, a high luminosity source is
required to get high statistics in the endpoint region, which is why the location to build
this experiment was chosen to be Karlsruhe. Here the Tritium Laboratory Karlsruhe (TLK)
has proven experience in tritium handling, as well as license for the required amount of
this radioactive hydrogen isotope. However, not only the amount of source material has
to be increased, but also a more sensitive MAC-E �lter system needs to be deployed. This
chapter will give a short overview over the di�erent components of the KATRIN beamline
and explain the systems which are of greater importance in this thesis more thoroughly.

3.1 Overview and measurement principle
The MAC-E �lter is the key feature of KATRIN. With its high energy resolution and per-
mission of large angular acceptance angles, it is prepared to precisely measure the energy
of the β-electrons close to the spectrum’s endpoint. The principle was �rst described in
[BPT80] and later adapted by the experiments in Mainz and Troitsk [KB05, Ase12].

Strong solenoids produce magnetic �elds in a spectrometer, to adiabatically guide the
β-electrons from their origin in the source to the detector. In the source, the electrons
are emitted isotropically under a polar angle θ to the magnetic �eld lines. The electron‘s
momentum can be split into a transverse component p⊥ = p · sinθ , which is responsible
for the cyclotron motion around the magnetic �eld lines due to the Lorentz force, and a
longitudinal componentp‖ = p ·cosθ , which is responsible for the guidance of the electrons
along the magnetic �eld lines in the beamline. In the same way the kinetic energy can be
split into a component parallel to the magnetic �elds E‖ and a perpendicular component E⊥.

As illustrated in �gure 3.1b, the electron’s momentum gets transformed to its longitudinal
component towards the center of the spectrometer, due to the adiabatic change in the
magnetic �eld. By providing electric �elds parallel to the longitudinal momentum of the
electrons, they get decelerated towards the center of the spectrometer and after passing the
center, accelerated again towards the exit (bottom of �gure 3.1b). The electrostatic barrier
generated by the electrodes therefore allows high precision �ltering of the electron’s
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3. The KATRIN experiment - towards a high precision ν mass measurement

energy, as electrons with the kinetic energy

E‖ < ‖qU0‖ (3.1)

get rejected by the potential.

To �rst order approximation, the change in the magnetic �eld can be considered as an
adiabatic process with a constant magnetic moment µ in the non-relativistic approximation
(γ = 1.04 for 18.6 keV electrons):

µ =
E⊥
B
= const. (3.2)

To guarantee an adiabatic change, the ratio of the maximum magnetic �eld strength Bmax
to its minimum Bmin must be su�ciently large and therefore limits the minimum length
of the spectrometer.
The minimum diameter is limited by the conservation of the magnetic �ux

Φ =

∬
A

®Bd ®A = const. (3.3)

A decrease in the magnetic �eld will therefore cause an increase in area and consequently
an increase in radius. The magnetic �eld has its minimum in the center (analyzing plane)
of the spectrometer, with a diameter of

dAP = dS

√
BS
Bmin
, (3.4)

where dS is the diameter and BS the magnetic �eld in the source.

In �gure 3.1a an overview of the whole KATRIN beamline can be found. In the fol-
lowing, the single components will be explained in order following the trajectory of the
β-electrons from the source to the detector.
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Figure 3.1.: KATRIN overview a) andMAC-E �lter principle b). The adiabatic change
in the ®B-�eld (grey) from maximum to minimum causes a transformation from
transverse to longitudinal momentum of the guided electrons (red). In the
middle of the analyzing plane, nearly all of the electrons energy is in E‖ . In
the presence of electric �elds ®E (green), which are provided by the electrodes
(blue), the electron therefore gets decelerated towards the center, allowing
precise energy �ltering of the electrons. Modi�ed from [Wan13].
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3.2 Source and Transport Section (STS)
The Source and Transport Section (STS) is responsible for providing a large β-electron
�ux through a high density tritium pro�le in the WGTS. As signal electrons are guided
magnetically from the source section to the detector, the beamline is open and can only
be closed at several points by valves. To prevent tritium from entering the spectrometer
section, two pumping sections (Di�erential Pumping Section (DPS), Cryogenic Pumping
Section (CPS)) are used to reduce the gas �ow by 14 orders of magnitude. The pumped
out tritium is then collected and re-injected into the source and thus provides a closed gas
circuit.

3.2.1 Windowless Gaseous Tritium Source (WGTS)
In the center of the beam tube of the WGTS, molecular tritium with a pressure of about
10−3 mbar gets injected via a capillary. The molecules then travel along the beam tube
and partially get pumped out at both ends of the WGTS. The isotopes get separated and
the tritium is fed back in the inner loop system. The composition of hydrogen isotopes
is monitored continuously by a LAser RAman spectroscopy setup (LARA) [Sch13]. The
temperature is kept at 30 K to minimize distortions in the signal electrons energy due
to thermal Doppler-broadening and to prohibit the accumulations of tritium clusters.
Measurements during the First Tritium Campaign (FT) have shown that the relative
temperature stability per run of (6.4 ± 0.5) 10−5 exceeds the requirement of 2 ·10−3 [KAT05]
by nearly two orders of magnitude [Hei18].
To reduce possible plasma e�ects and potential misalignment of the beamline, only the
inner part of dS = 8.2 cm of the WGTS’s beam tube diameter (d = 9 cm)is used for neutrino
mass analysis. Furthermore, the solenoids need to be operated on lower currents to prevent
them from quenching [AB18c]. This results into a lower magnetic �eld strength in the
source of BS = 2.52 T and a magnetic �ux of

Φ = 133.7 Tcm2 (3.5)

which has to be guided through the beamline to the detector. The reader may �nd more
information in [Höt12, Kuc16, HS17, AB18b].
Rear wall and E-gun
At the upstream end of the beamline, the rear section monitors

• the source activity by β-induced X-ray spectroscopy (BIXS) [Röl15],

• the source density via inelastic scattering of electrons in the source with the mounted
Electron Gun (E-Gun) [Beh16].

This E-Gun is also used to measure the inelastic cross section of β-electrons scattering
o� hydrogen isotopes and the corresponding energy loss function1. They both cause
systematic uncertainties and have to be precisely known for an optimized neutrino mass
measurement [Hei15, Gro15, Tro18].

1commissioning in STS-IIIa measurement campaign in September/October 2018.
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Figure 3.2.: CAD drawings of the transport section’s components. a): DPS beamline.
b): CPS beamline. Figures taken from [FR18].

3.2.2 The Transport Section
The transport section (�gure 3.2) has the main requirements to guide the signal electrons
magnetically through the beamline and reduce the gas �ow. This is done by a Di�erential
Pumping Section (DPS �gure 3.1a c)) which uses four Turbo Molecular Pumps (TMPs)
and the Cryogenic Pumping Section (CPS �gure 3.1a d)), which uses an argon frost layer
maintained at 3 K to adsorb the tritium molecules. Furthermore the beamline is tilted in
both of these sections in order to increase the probability of neutral tritium hitting the
beamline walls, which results in a higher pumping probability.
3.2.2.1 Di�erential Pumping Section (DPS)

A total of four TMPs, installed along the beamline of the DPS together with TMPs installed
at the entry of the DPS, reduce the tritium gas �ow along the DPS beamline by up to
�ve orders of magnitude. The tilted segments of the DPS beamline furthermore reduce
the velocity of the gas molecules and therefore actively help the TMPs to achieve a
pumping speed of 2400 l/s each [Jan15]. Superconducting solenoids installed along the
beamline guarantee a zero-loss magnetic guidance of the signal electrons through the tilted
segments. However, as a large number of electrons are present in the WGTS, ionization of
gas molecules causes tritium ions which are guided along the chicane as well. To suppress
these ions reaching the spectrometer section, where they could potentially produce a
background signal, several devices are installed into the DPS.

• Three dipole electrodes (half-pipe shaped stainless steel electrodes), which causes
the ions to be de�ected onto the walls of the beamline due to ®E × ®B drift [Win11,
Hac15].

• An electrode with a ring shape is operated on positive voltage to block the ions.

• The Fourier Transform-Ion Cyclotron Resonance (FT-ICR) diagnostic unit aims to
identify the ion species by creating a Penning trap and investigate the cyclotron
radiation signal [Ubi11].
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For more information about the ion production and suppression, the reader is referred to
[Kle18].

3.2.2.2 Cryogenic Pumping Section (CPS)

The CPS has similar goals as the DPS: The reduction of tritium gas �ow while guiding
the signal electrons to the spectrometer section. However, the manner in which the
reduction factor of more than 107 is achieved, is di�erent to the DPS. Instead of using
TMPs, a 3 K frost layer of argon with an area of about 2 m2 is prepared on the inner
surface of the beamline. The beam tube is divided into seven elements, each one being
surrounded by superconducting solenoids, which provide the guiding magnetic �eld lines
for the signal electrons. The second and fourth element are tilted by 15 ◦ compared to
the longitudinal spectrometer axis (z) to ensure the tritium molecules hit the wall and are
adsorbed there. The clean gold plated inner surface of the stainless steel beam tube allows
optimal crystallization conditions for the argon frost, which will be regenerated every
60 days. For further information, the reader is referred to [FR18].

3.3 Spectrometer and Detector Section (SDS)
When leaving the transport section, the signal electrons enter the spectrometer and
detector section. This section with its three main devices, the pre-spectrometer (PS), the
main spectrometer (MS) and detector, has several goals: First, �lter the signal electrons
with energies close to the endpoint and reject all electrons below the endpoint, by utilizing
MAC-E �lter systems. Second, measure the energy of each of the transmitted electrons
through these �lters. Third, provide excellent Ultra-High Vacuum (UHV) conditions, to
prevent the electrons from scattering with residual gas molecules and therefore maintain
a low background.

3.3.1 Pre-Spectrometer
In the KATRIN standard neutrino mass measurement mode, the PS has the main goal
to reduce the number of electrons entering the MS by rejecting most of the incoming
signal electrons. This is done by setting the electrodes on a negative potential of -18.3 kV
and therefore rejecting the electrons electrically. However, the PS is much more than
a pre-�lter. After its commissioning, it was used extensively as a test device to study
several techniques, such as the MAC-E �lter principle and the UHV system. These studies
allowed an optimized design of the main spectrometer. Furthermore, the PS was also used
to identify background sources in presence of a MAC-E �lter design [Frä10].
The PS’s vessel is made of 10 mm thick stainless-steel, has a length of 3.38 m, an inner
diameter of 1.68 m, and is electrically isolated from its surrounding devices by ceramic
insulators. The vessel can also be set on high voltage, which is a major di�erence to the
spectrometers used in Mainz and Troitsk [Frä10].
To maintain a pressure of 10−11 mbar in normal neutrino mass measuring mode, two TMPs
are mounted to the pump ports. Furthermore, NEG material is installed into the pump
ports with a pumping speed of 27000 l/s. After heating the spectrometer in a so-called
bake-out process, which removes most of the thin water-�lms on the surface, this NEG is

22



3.3. Spectrometer and Detector Section (SDS)

wire	electrodes

upstream
cone	electrodes

downstream
cone	electrodesPS1 PS2

ground	
electrodes

shield	
electrodes

hull

source	and	
transport	section

main	spectrometer
and	detector

3.38	m

1.68	m

Figure 3.3.: Schematic drawing of the PS.

activated. It consists of porous material, which adsorbs the residual gas molecules.
An overview of the PS’s inner electrode system (�gure 3.3) shows the major components.
All electrodes, besides the ground electrode which is �xed to ground potential, can be set
on di�erent potentials in order to

• suppress background from the inner surface of the vessel by setting the inner wire
electrodes on more negative potential,

• optimize transmission properties by �ne-tuning the electrode settings, and

• remove trapped particles via ®E × ®B drift, caused by the dipole mode of the inner
electrodes.

The upstream- and downstream-cone electrodes are made of full metal sheets, whereas the
wire electrodes are made of 120 wires each with 0.5 mm diameter. Two superconducting
solenoids (Pre-Spectrometer Solenoid 1 (PS1) and Pre-Spectrometer Solenoid 2 (PS2)),
with a maximum magnetic �eld of 4.5 T each, are framing the PS, each with a distance of
2.15 m between the center of the magnets and the PS’s analyzing plane. They provide the
magnetic guiding �eld for the signal electrons.
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3.3.2 Main Spectrometer
The MS is a bigger, and slightly modi�ed version of the PS. With a diameter of 10 m and a
length of 23 m, it is the largest MAC-E �lter spectrometer. Framed by two superconducting
solenoids (PS2 and PinCH solenoid (PCH)), which provide the guiding magnetic �eld, the
MS reaches an energy resolution of ∆E = 0.93 eV at 18.6 keV with a minimum magnetic
�eld of 0.3 mT in the analyzing plane [KAT05]. For �ne-tuning the magnetic �eld in the
analyzing plane, the MS vessel is furthermore surrounded by a Low Field Coil System (LFCS)
and an Earth Magnetic �eld Compensation System (EMCS) [GD13]. For more information
about the magnetic �eld systems deployed in and around the MS, take a look at [Erh16]. To
�ne-tune the electrostatic potential, two layers of wire electrodes are installed into the MS,
which furthermore serve the purpose of electrically rejecting noise electrons originating
from the surface of the vessel [Val09, Val11].

3.3.3 Detector and DAQ
The Detector Solenoid (DET) is located 1.6 m away from the PCH towards the downstream
side of the beamline. Its magnetic �eld lines have the purpose to guide the electrons leaving
the MS on their �nal path to the FPD wafer. A �nal electrode, called Post Acceleration
Electrode (PAE) can accelerate the electrons and therefore move their kinetic energies
in regions, where the FPD intrinsic background due to γ -radiation is lower [AB15]. Fur-
thermore, it reduces backscattering from signal electrons o� the FPD by decreasing their
incident angle [Ren11]. During all measurements carried out in this thesis, the PAE was
operated on 10 kV.
To count the electrons and read out their information, a segmented PIN diode array is
used. While the sensitive front side of the wafer, with a diameter of 90 mm, is unseg-
mented, the backside is divided into 148 pixels with equal area of 44.1 mm2. The pixels are
arranged in twelve outer rings consisting of twelve pixels each, and an inner ring called
the bulls eye, consisting of four pixels. After a transition of the signal from electrical to
optical and back to electrical, the analogue signal from up to 24 pixels is digitized via
serial Analog-to-Digital Converters (ADCs) and the event’s energy and time is read out
by Field Programmable Gate Array (FPGA). Both the ADC as well as FPGA are contained
in First Level Trigger (FLT) cards, which are connected via a Second Level Trigger (SLT)
to the Data Acquisition (DAQ) computer. There the object-oriented and real-time analysis
software ORCA can access the FLT and SLT cards. Via the ORCA interface, the user can
manually start and stop measurements, set the time for measurements and live-view the
measurement. Another powerful feature of ORCA is the possibility to write measurement
scripts, in which the user can set e.g. electrode voltages, measurement times etc. It is
therefore possible to automate measurements.
Measurements are divided into runs, which itself can be divided into sub-runs After
the completion of a run, the data is transferred to the KATRIN Database Management
System (DBMS). For further reading, the reader is referred to [Har15] and [AB15].

24



4 Background contributions

4.1 Overview
Since the statistics of signal electrons in the Region Of Interest (ROI) is very poor, a low
background level is key for reaching the sensitivity of 0.2 eV. The background as a free
parameter in the neutrino mass �t function has a direct impact on the sensitivity and
systematic budget of the neutrino mass. The current background rate of ≈400 mcps in
the MS limits the neutrino mass sensitivity of KATRIN to ≈ 0.24 eV. In order to reach the
maximum sensitivity of 0.2 eV, a suppression of the current background level by a factor
of ≈50 is necessary. Therefore a detailed understanding of the di�erent processes as well
as active suppression methods are required. This chapter is intended to give an overview
of the major background processes in the Spectrometer and Detector Section (SDS) (�gure
4.1).

4.2 Energy loss of stored electrons
In general, the motion of an electron in a MAC-E �lter is made up of three components
(�gure 4.2):

• A fast gyration around its center of motion, due to the cyclotron force.

• A longitudinal motion of the center of motion along the guiding magnetic �eld lines.
For stored electrons, this results in a longitudinal oscillation.

• A slow oscillation around the middle axis in z-direction of the spectrometer (mag-
netron drift).

For non-axially symmetric �elds, the magnetron drift can also cause a slight radial change.
These motion plays an important role if an electron is stored. Because the electrons get
re�ected close to the exits of the spectrometers, they can be stored over a long period of
time, which can lead to a full magnetron circle. The primary electrons can cool down by
scattering o� residual gas molecules and eventually escape the trap due to either energy
loss or angular change. The secondary electrons resulting from scattering can only be
produced along the primary’s path of motion. As these electrons have much lower ener-
gies than the stored ones, they can escape the magnetic trap and reach the detector. The
spatial distribution of these secondary electrons at the detector can therefore visualize
the primary’s path of motion. The primary’s initial energy can also be indicated by the
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Figure 4.1.: Di�erent background processes, which have been able to be identi�ed and
suppressed, meaning they do not have a signi�cant overall contribution to the
current background (blue). The major background contribution up by now is
of unknown source, but may arise due to highly excited atoms, called Rydberg
atoms (red). Although various suppression systems have been deployed, tritium
may still be a possible background source, when KATRIN enters its long-term
neutrino mass measurement (red).

number of secondary electrons produced, which depends on:

• For the PS, electrons below about 100 eV are not stored. This means that the primary
electron will not deposit all of its initial energy in the production of secondary
electrons. Furthermore, these secondary electrons usually have low energies (�gure
5.5) and can escape the trap quite fast, almost producing no tertiary electrons.

• As the electrons perform a circular motion in the presence of a magnetic �eld, they
can also su�er from radiative energy loss due to synchrotron radiation.

• Electrons with high kinetic energies have large cyclotron radii, which can lead
to hitting a wall of the spectrometer and therefore a premature termination of
secondary electron production.

For an electron at the starting point ®xs , the polar starting angle θ must be smaller than

θmin = arcsin ©«
√

qU (®xs)

Ekin(®xs)

B(®xs)

Bmax

ª®¬ (4.1)

to escape the trap. This escape mechanism is independent of the azimuthal angleφ ∈ 0, 360◦
and therefore has the geometric shape of a cone. Here U (®xs) is the electric potential, and
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4.2. Energy loss of stored electrons

B(®xs) the magnetic �eld at the starting point, and Ekin and Bmax the initial kinetic energy of
the electron and the maximum magnetic �eld in the spectrometer. This angle gets smaller
for increasing energies, therefore high energy electrons have a high storage probability.
4. Radon-Induced Background

magnetic bottle (axial)

magnetron

cyclotron

Figure 4.2: Visualization of the trajectory of a magnetically-stored electron inside
the main spectrometer. While being reflected in the high magnetic field regions at both
ends of the spectrometer, the electron performs a slow magnetron drift around the spectrometer
axis which is superimposed by the fast cyclotron motion. Along its flight path, the primary
electron cools-down via scattering o↵ residual-gas molecules. Secondary electrons that are
generated in inelastic scatterings will share the same magnetron radius as the primary electron.
When breaking the storage conditions, these electrons generate a ring-like event pattern on
the detector which is characteristic for backgrounds that are induced by magnetically-stored
particles. Adapted from [Bar14].

µ = E?/B is no longer conserved. This can happen in particular in the low magnetic field
regions close to the analyzing plane and for large electron surplus energies.

Figure 4.2 visualizes the trajectory of a magnetically-trapped electron in the main spec-
trometer: While moving back and forth on its fast cyclotron path between the two mag-
netic mirrors at each end of the spectrometer, the electron performs an additional slow drift
around the axis of the spectrometer, the so-called magnetron drift. The stored electron
can loose energy via two di↵erent processes. According to [Wan13a], the energy loss by
synchrotron radiation can be approximated by �E?/�t ⇡ 0.4 · B2 · E? and dominates for
electrons with large transverse energies E? > 10 keV. At lower energies, the cross section
for inelastic (and elastic) scattering with residual-gas molecules strongly increases, making
those processes the dominant cool-down mechanism.

A stored electron will continuously lose energy until it breaks the storage condition de-
scribed by Equation 4.1. At the same time, secondary electrons are continuously generated
via the ionization of residual-gas molecules in inelastic scatterings. These secondaries will
share the same magnetron radius as the primary electron and will, depending on their
initial angle and energy, be stored as well. As a result, they can, for their part, generate
further, tertiary electrons. In this way, one high-energy primary electron can generate
up to several hundreds of low-energy electrons. With the UHV conditions in the spec-
trometer it can take hours until a keV-electron is cooled-down far enough to leave the
trap. Consequently, the correlated secondary electrons with energies in the eV-range will
leave the spectrometer towards the detector over the course of hours. As these electrons
are accelerated by the retarding potential and are guided adiabatically to the detector,
they cannot be di↵erentiated from signal electrons. The non-Poisson nature of this corre-
lated background events potentially has a huge impact on the neutrino-mass sensitivity of
KATRIN in case of no countermeasures [Mer13].

As all secondary electrons share the magnetron radius of the primary electron, they are
observed as a ring-shaped event pattern on the detector (see right side of Fig. 4.2). Nev-
ertheless, due to the long time periods, over which these correlated electrons appear on

86

Figure 4.2.: Cluster signature of stored electrons. While moving back and forward
through the spectrometer, the electron performs a fast cyclotron motion around
its guiding path. This is accompanied by a slower and larger motion around
the symmetry axis of the spectrometer, the magnetron motion. Therefore
secondary electrons being produced from the primary electron will leave a
ring-like pattern on the detector. Figure taken from [Har15].
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Figure 4.3.: Escape cone of stored electrons. If θ < θmin the electron can escape the
magnetic trap. Figure inspired by [Frä10].
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Figure 4.4.: Muon background shielding. Muons can scatter with atoms and molecules
in the vessel of the spectrometer and cause secondary electron emission within
the spectrometer’s volume. In order to shield these electrons, wire electrodes
are deployed with a negative potential di�erence to the hull. Figure inspired
by [Wan13].

4.3 Muon induced events
Since the bremsstrahlung for muons is lower than for electrons due to their higher mass, a
large muon �ux coming from cosmic rays of about 105 particles per second is expected
to hit the spectrometers at Sea level. When passing through, they may cause secondary
electron emission because they can deposit energy in the vessel walls of the spectrometers,
which are made out of stainless steel and therefore have high stopping power. However,
these muon-induced electrons only have a small probability to penetrate the �ducial
volume of the spectrometers due to:

• Electrostatic shielding: The vessel and inner wire electrodes are set on di�erent
potentials, causing electrons coming from the walls to be re�ected (�gure 4.4).
The MS features a double layer of thin wire electrodes, which yields an improved
suppression factor of 102 compared to a single layer.

• Magnetic shielding: due to the Lorentz force, the electrons perform a circular motion
around the guiding magnetic �eld lines. Therefore electrons coming from the
surface will be rejected, when they reach the magnetic �eld lines. Only electrons
with small polar angles could penetrate the �ux tube, but their path of motion would
nevertheless be outside of the �ducial volume.

For electrons that do reach the �ducial volume, and therefore have the possibility to
reach the detector, a muon veto system was deployed. This detector system checks for
coincidence of events in both the muon detector and the FPD.
Since the background due to muons is rather small (about 7 mcps), the muon system is
only active when doing measurements when the di�erence of 7 mcps is signi�cant (mainly
for measurements with the PS). Due to the high normal background rate of the MS of
400 mcps, the muon system is turned o�, otherwise it would cause a large data overhead
when taking long term measurements.
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Figure 4.5.: Penning trapmechanism (left side) and Penning discharge (right side),
see section 4.4 for details. Figure inspired by [Frä10].

4.4 Penning traps
The Penning traps have been studied in [Frä10]. Particles can not only be magnetically
trapped (section 4.2), but also electrically (�gure 4.5, left side). A primary electron can
be created at the surface of a cathode by for example natural radioactive processes. This
electron then gets accelerated towards the middle of the anode and de-accelerated after-
wards before hitting the other cathode (1). However, if this electron loses energy due to
cyclotron radiation or scattering, it cannot reach the other cathode but gets re�ected there,
resulting into a trapped electron. This electron may now produce secondary electrons and
ions by scattering o� residual gas (2). The secondary electrons have low energies and can
also be trapped causing further ionization. The maximum number of secondary electrons
created by a primary electron is given by

Nmax = 2
e ·Utrap
Eion − 1, Utrap = Umax(Vp) −Umin(Vp), (4.2)

where Utrap is the potential di�erence of the maximum and minimum potential in the
Penning region and Eion is the required ionization energy of the residual gas molecule.
The ions move towards the cathode surface where they create further electrodes, which
can also be stored with probability p(eion). If p(eion) · Nmax > 1, a self-sustained Penning
discharge starts. The accumulation of electrons leads to a negative space charge, which
then decreases Utrap. Therefore only electrons in a region close to the anode can gain
su�cient energy for ionization [Kna62]. An equilibrium discharge state can be reached,
causing a stable Penning discharge.

Due to thorough measurements, simulations and counter-measurements such as a modi�ed
electrode system and so called Penning wipers, the background contribution due to Pen-
ning discharge has been e�ectively decreased by several orders of magnitude. Therefore it
does not play an important role in standard operational mode anymore.
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4.5 Rydberg hypothesis
The remaining background component, after developing systems and models to suppress
the known background sources, exceeds the design value of 10 mcps [KAT05] with a rate of
≈400 mcps [Har15]. Dedicated measurements to study this remaining component revealed
the following properties [Har15]:

• nearly pressure independent,

• dependence on inner electrode settings, and

• uniformly distributed in the spectrometer’s volume.

Possible candidates, which could cause this remaining background contribution, are highly
excited atoms with high quantum numbers n, so-called Rydberg atoms [Tro18, Hin18]. In
order to show the implications of a high quantum number, the Bohr model is useful. The
radius of an atom’s orbital electron rn is described by

rn ∝
n2

Z
, (4.3)

where n is the quantum number, and Z the nucleus charge number. The quadratic de-
pendency of the radius on n implies that an excited hydrogen atom Z = 1 with quantum
number n = 10, has a 100-times higher radius compared to its ground state. This has also
impact on the binding energy of hydrogen and hydrogen-like ions

En = −
Z 2

n2 · 13.6 eV, (4.4)

which decreases quadratic with n. Furthermore, these highly excited states usually have a
high lifetime τ ∝ n4.5 [BS57]. Currently it is assumed, that the Rydberg atoms originate
from the α-decay of implanted 210Po, a daughter nucleus of 222Rn. The resulting ion
206Pb can scatter with atoms of the stainless steel, causing some of the scattered atoms
to leave their lattice and penetrate the spectrometer’s volume, or leave the vessel itself,
enter the volume and cause a release of Rydberg atoms by hitting the opposite site of the
vessel. Since the Rydberg atoms are electrically neutral, they are not a�ected by the inner
electrodes potential and may likely be in highly excited states [Kel82, FMO82, WB94].
To emulate the observed constant volume background density, ionization processes have
to take place constantly. However, these ionizations must not come from scattering o�
residual gas molecules, as no su�ciently large correlation of rate and vessel pressure was
observed. Furthermore, the excited states must be low enough, such that the electric �eld
between the vessel and inner electrodes does not cause an instant ionization of the Rydberg
atoms. Recent and ongoing studies show that metastable auto-ionization processes are
valid candidates to explain the Rydberg atoms, but do not have a su�ciently long lifetime
[Hin18].
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4.6 Radon induced events
Radon as an indirect source for increased background has been studied in [Frä10, Wan13,
Har15]. In these works, a detailed model of the processes leading to electron emission has
been developed. Radon can emanate from the stainless steel vessel into the spectrometer
volume and decay there via alpha decay to polonium. This may lead to an excited state of
Po, causing the emission of electrons in the range of (1, 105) eV. The isotopes 219Rn and
220Rn in particular play a major role, due to their short half-life of 3.96 s and 55.6 s. The
isotope 222Rn is not of importance, since the half-life of 3.82 d is much larger than the
average gas pump out time of the MS of 300 s [Wan13]. As the alpha particles are much
heavier than electrons, they will hit somewhere on the inner surface of the spectrome-
ter, because they are not guided by the magnetic �eld lines. The FPD is only sensitive
to electrons which can accompany the radon decays by the following processes (�gure 4.6):

• Shake o�: The emitted alpha particle can interact on its way with an inner shell
electron, transferring some of its energy to the electron, so it can be lifted into a
higher shell or ultimately leave the Coulomb �eld. The necessary energy for a shake
o� corresponds therefore to the binding energy of the electrons in a speci�c shell,
spanning a continuous spectrum up to 10 keV.

• Conversion: If the decay of 219Rn ends in an excited state of 215Po∗, the cool down to
its ground state 215Po can either happen via radiation or by emission of an internal
conversion electron with energies in the range (40, 500) keV.

• Atomic relaxation: If conversion or shake-o� electrons have been emitted, a vacancy
is left in the inner shell, which can be occupied by an electron from higher shells.
These transfer their binding energy to a second shell electron, which can then be
emitted. This process doubles the number of vacancies and can therefore lead to a
cascade of relaxation processes being propagated to the outermost shell accompanied
by the emission of several electrons with energies up to 10 keV. The vacancy can
also be �lled via radiation, transferring the initial vacancy to a higher shell.

Another source of natural radon isotopes is the NEG material, which is used together with
the TMPs to maintain the UHV conditions in the spectrometers. To prevent the radon
from reaching the spectrometer volume, a nitrogen cooled ba�e system has been deployed
in front of the NEG pumps to adsorb the radon [Har15].

The experimental approach to study the background contribution of radon is usually
done at an arti�cially elevated pressure. At an elevated pressure, the number of residual
gas molecules is increased, making the ionization of gas molecules due to stored electrons
more likely and thus leading to a decreased cool down time and faster energy loss of
the stored electron. This decreased mean average time between two ionization processes
is especially useful for the algorithm used to cluster these events and classify them as
secondary electrons due to a radon decay (section 5.3).
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Figure 4.6.: Sketch of radon accompanied electron emission processes. Explana-
tions in section 4.6. Sketch based on [Wan13, Sch14].

4.7 Tritium induced events
Tritium can enter the spectrometer section in either molecular or ionized form. Although
simulations of the CPS [FR18] have revealed a higher retention factor of the transport
section than designed [KAT05], small number of tritium molecules can still di�use from
the source section to the PS and afterwards the MS.
Despite the suppression methods of the DPS (section 3.2.2.1), there is still a small possibility
that ions enter the PS. There the electric �eld works not as a �lter but as an accelerator,
causing the ions to hit the downstream side of the PS hull or the full metal electrodes. The
ions then get implanted and neutralized there. If these implanted tritium atoms decay
in the vessel steel or on its surface, this should not result in an increased and therefore
measurable background rate, because the MAC-E �lter works as a magnetic and electric
shield. However, if they get emitted back into the volume and decay there, this would lead
to secondary electron production through ionization, analogue to keV electrons emitted
by a radon decay accompanied process.

A signi�cant amount of tritium in the spectrometer section is therefore unfavorable,
because an increased background rate due to tritium has a direct implication on the neu-
trino mass sensitivity, as the background is a free �t parameter in the neutrino mass
�t. This is especially important if the tritium is able to reach the MS, as the PS in stan-
dard neutrino mass measurement mode is operated on a lower potential than the MS.
Therefore the electrons due to tritium decay will get rejected in the analysis plane of the MS.

It is therefore of high importance, to develop and have high precision methods to de-
tect tritium in the PS, before it can reach the MS. In the course of this work, statistical
methods have been applied to highly increase the sensitivity to tritium induced electrons.
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5 Machine learning algorithms for active
background characterization

This chapter describes both unsupervised and supervised machine learning approaches as
an superior alternative to the previous clustering algorithm.

Machine learning can be divided into two domains (�gure 5.1). In the supervised ap-
proach, each observation of the predictor measurement xi , i = 1...n is associated with a
response measurement yi . The goal is to �t a model that relates the response observations
to the predictor observations in such a way that either the learned model can predict
future response observations yk with xk as input (prediction), or learn more about the
relationship of the data (inference). A popular example is a linear regression, where a
function f (x) = a · x + b is �t to (x ,y)i in order to approximate y.
In contrast, unsupervised learning tries to learn features about the observation vector
xi , i = 1...n, without knowing the responseyi . Here, a popular example is the k-means clus-
tering method, where the observation space V is divided into k-distinct, non-overlapping
subspacesVj , j = 1..k (Voronoi regions) and each observation within these regions belongs
to the same cluster.
Although the �rst learning algorithms, like the perceptron algorithm by F. Rosenblatt
[Ros57], have been proposed in the last century, the popularity has increased in recent
times. This has a lot of reasons, but the ones with the most impact include:

• The number of data taking devices (sensors) has increased rapidly due to digitaliza-
tion and the need to store information as data.

• Increased and improved methods and infrastructure to store and process this data
rapidly (Big Data).

• The success stories of tech-companies such as Google and Facebook, who put a lot
of their �nancial power into research about machine learning algorithms, as their
business is based on these techniques.

Nowadays, machine learning algorithms have a broad application spectrum. Most often, we
do not even recognize their deployment in everyday situations such as text auto-completion
[Sho13], and tra�c prediction [LD15]. In economics, machine learning methods are used
e.g. in sales prediction [SC08], customer relationship management [NXC09], and per-
sonalized advertisement [Dis18]. However, in science these methods have already been
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5. Machine learning algorithms for active background characterization

established for decades. Here, these algorithms are used, for example, in molecular biol-
ogy for genome classi�cation [SR02], in medical imaging for assisted cancer detection
[MG11], and also in high-energy physics for particle identi�cation. A popular example
is the multi-variate analysis of the Higgs boson conducted by the ATLAS collaboration.
When they had the �rst results of their analysis, they provided a data challenge, opening
simulation data to interested data scientists to explore the data and develop their own
analysis work-�ows [OLu14, Kag18].

In comparison to the Compact Muon Solenoid (CMS) detector, which has several dif-
ferent detectors and therefore can do a full multi-variate analysis, KATRIN features only
one detector. However, the information gathered by the detector can also be split into
di�erent channels, making a multi-variate analysis possible, at least for background char-
acterization of cluster events.

To apply and study both supervised and unsupervised methods, a combination of particle
storage simulations (section 5.1) and measurements is used to construct a training data
set (section 5.2). Then this training data set is used to optimize the performance of the
cluster algorithm, which was used up until now (section 5.3). Afterwards, examples of
unsupervised (section 5.4) and supervised methods (section 5.5) are described in detail
and applied to simulation data to check the performance. The chapter closes with a short
comparison of the algorithms and a recommendation in section (5.6).

Machine	
Learning

Supervised
Learning

Unsupervised
Learning

Cluster	Methods:
k-means,	hierarchical	clustering

Dimensionality	Reduction:
principal	component	analysis

Resampling	Methods:
bootstrap,	cross-validation

Regression:
linear,	polynomial,	deep	learning	

Classification:
discriminant,	kernel	based,	deep	learning

Image/Language	Processing
Cat:	95%

Figure 5.1.: Application ofmachine learning algorithms are summarized in two areas:
Unsupervised learning, which does not require prior knowledge in form of a
training data set, and supervised learning, which �rst needs to learn features
from a training data set.
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5.1. Storage simulations

(a) (b)

Figure 5.2.: Initial position of the primary and secondary electrons within the PS.
The �gure shows that electrons are generated homogeneously both in (x , z)
as well as in (y, z) direction. The tiny number of outliers is not important, as
these electrons are not able to reach the PS2 anyway. z-axis normed to FPD
coordinates and x ,y-axis to center of beamline.

5.1 Storage simulations
In order to understand the behavior of stored electrons due to tritium β-decays within a
MAC-E �lter based spectrometer, simulations are performed. The simulation con�guration
is given in subsection 5.1.1 and the results in subsection 5.1.2.

5.1.1 Simulation con�guration
Electrons are generated from a tritium β-energy spectrum homogeneously in the �ux
tube of the PS (�gure 5.2). The KASSIOPEIA generator used to do so, calculates the initial
position of the particle with a �ux tube value Φ, and the magnetic �eld strength, which
depends on the z-position [Ahm16]. However, as the magnets will be operated at 70 % of
their strength, the conservation of the �ux tube (equation 3.3) would cause a rise in the
radius of the �ux tube, which could exceed the dimensions of the PS. To emulate realistic
conditions, the nominal �ux tube of 191 Tcm2 needs to be modi�ed to:

Φnominal = B · A = B ·
(
π · r 2) (5.1)

Φ�nal = 0.7 · Φnominal = 133.7 Tcm2. (5.2)

However, electrons created outside of the �ux tube can still penetrate it frequently, due to
their rather large cyclotron radius

rcyclotron =
m · c

√
γ 2 − 1

|q | · B
, (5.3)

which can lead to an adiabatic guidance through the PS’s magnetic �eld. The new �ux
tube is therefore simply scaled by a factor of 0.8 instead of 0.7, to include the generation
of these electrons

Φsim = 0.8 · B ·
(
π · r 2) = 152.8 Tcm2. (5.4)
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Figure 5.3.: Magnetic �eld strength at di�erent z positions of the whole beamline is
displayed in grey, the corresponding trajectory of electrons starting on the
outer ring of the FPD projected to the x-axis is displayed in blue. A 0.6 mT
setting of the LFCS was used.

Magnetic �elds are simulated in the whole beamline, because they have a non-negligible
in�uence on the magnetic �eld in the PS created by the solenoids PS1 and PS2. In particular,
the magnetic �eld of the CPS has a major impact on the shape and strength of the magnetic
�eld in the PS. In �gure 5.3 the magnetic �eld strength in dependence of the z-position
(grey), as well as the corresponding trajectory of an electron starting from the pixels of
the outer FPD ring projected on the x-axis in dependence of the z-position are shown.
The hull of the PS is operated at −18600 V and the full metal electrodes as well as the inner
wire electrodes with an o�set to the hull of −400 V. The MS electrodes are grounded.
Tracking of the electrons is performed using a symplectic integrator1 with a step size
of 1 mm. This means every mm the equations of motion are numerically solved and the
particle shifted according to the solution. Interactions with residual gas are also included,
which in this case is hydrogen at a pressure of 3×10−9 mbar. For further information about
the software and simulation framework KASSIOPEIA, have a look at [Fur15, FG17].
Termination of tracking

To minimize computational e�ort, the tracking is terminated if:

• term_min_z: The particle passes the z position of the center of the PS1 magnet.

• term_max_z: The particle passes the z position of the center of the PS2 magnet.

1implementation in KASSIOPEIA is based on [Chi08]
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Figure 5.4.: a): Ionization cross sections of Ar, H and H2 up to 1 keV derived from the
LxCat database [LxC13, LxC12, LxC10]. To extrapolate the energies up to the
endpoint of the tritium spectrum, a power law �t is performed. At the tritium
peak of ≈2-5 keV, the mean ionization cross section is ≈ 1.38 · 10−21 m2. b):
Storage time of electrons. Electrons with energies over 1 keV can have a
total storage time of up to several hours. Figure taken from [MD13a].

• term_max_r: The particle exceeds the maximum radius and is considered to be no
longer in the �ux-volume.

• term_surface: The particle passes a surface of the PS.

• term_electrode: The particle passes an electrode.

• term_max_stepsize: The particle tracking passes the threshold number of steps
(109).

• term_max_t: If real calculation time between two steps exceeds the limit. This can
be the case for electrons coming close to the electrodes. Here, the approximation
of electric �elds by the so-called zonal-harmonic �eld solver is valid no longer and
the calculation method switches to an exact one, which is much slower. This can
cost computation time, and particles close to the electrodes are not of interest in this
storage simulation in any case.

Dynamical enhancement
Since the small scattering cross section of ≈ 20 keV electrons and residual gas molecules
can imply a storage time of up to thousands of seconds (�gure 5.4b [MD13a, Wan13]),
storage simulations require large computational power. This arises mainly due to the
exponential decrease in the scattering cross section of high energy electrons and residual
gas molecules (�gure 5.4a). To compensate for this energy dependent cross section, a
dynamical enhancement factor is used. This factor is multiplied with the scattering cross
section to make interactions, as well as the energy loss due to synchrotron radiation at
high energies, more likely. It is dynamical such that its impact is higher for higher energies
and decreases when the electron is losing energy. This factor can therefore speed up the
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5. Machine learning algorithms for active background characterization

storage simulations and save a lot of computational e�ort [Ahm16]. In the simulations
performed in this thesis, the dynamical enhancement factor was set to 106. Furthermore,
H2 was used as a residual gas to provide a scattering medium for the electrons. While this
is a realistic representation for emulating nominal pressure measurements, it is not entirely
correct for elevated pressure measurements. These measurements use argon and make use
of its rather small ionization energy and higher cross section, compared to hydrogen atoms
and molecules (�gure 5.4a), which results in a higher number of secondary electrons.

5.1.2 Simulation results
The analysis of the simulated data is performed in the following way:
First all electrons which reach the PS2 are located (term_max_z), because only these have
the possibility to reach the detector. Here it is assumed that all electrons reaching the PS2
would be guided through the magnetic �eld of the MS and reach the detector. Furthermore,
a ROI-cut is performed in the energy range of [−22,−16] keV corresponding to all electrons
with energies 19±3 keV. The total number of electrons generated in the simulation is
176480, of which 78182 were able to reach the PS2 and 73485 lie within the ROI. This
is equal to a fraction of 73485

176480 ≈ 0.42. With a symmetric cone electrode con�guration
and homogeneously generated electrons within the �ux tube, a theoretical fraction of
0.5 would have been expected to reach the PS2. However, the additional terminators and
a reasonable step_size may lead to an early abort of the simulation and therefore the
fraction of electrons reaching the PS2 relative to the total number of electrons in the
simulation is smaller.
Second, the position of the electrons terminated at PS2 needs to be mapped onto the
detector pixels. To derive a mapping procedure, a second simulation was conducted. In
this simulation only the trajectory of the electrons from the detector throughout the whole
beamline to the source section was tracked, with magnetic �elds on and electric �elds o�.
The most recent beamline con�guration (Very-First Tritium campaign (VFT), FT) was used.
To derive the maximum radius electrons can have in the middle of the PS2 magnet to reach
the detector, the radius for every pixel in the outer ring is determined in dependence of the
z-position. Next, an interpolation between these value pairs allows one to approximate the
radius to an exact z-value. Then the mean of all radii of electrons starting at the center of
the pixels in the outer FPD ring is determined as a measure of the maximum radius, which
is 0.041 m. The �nal position at termination by term_max_z is then scaled by a factor of

f =
rdetector
rPS2

=
0.045
0.041 (5.5)

to map the electrons in the PS2 to the detector. Since all events (primary and secondary) are
cluster events, these clusters need to be distinguished from each other. This is simply done
by their simulation_id, because each simulation only simulates one primary electron. As
storage simulations can consume a lot of time, the simulations are performed in parallel on
the TESLA cluster. In total, two storage simulations consisting of ≈1000 primary electrons
each were performed at two di�erent pressures: 3×10−9 mbar (elevated pressure) and
4×10−11 mbar (nominal pressure).

The energy spectra of both primary and resulting secondary electrons at creation and
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Figure 5.5.: Initial and �nal energy distribution of simulated electrons. Initial en-
ergy distribution of primary electrons (blue) and secondary electrons (grey) is
shown in a). While the primary electron energy distribution shows the one of
tritium β-decay, the secondary electron distribution shows a typical ionization
distribution. Energy distributions at the termination of tracking are shown
in b). Most primary and secondary electrons have an energy close to 19 keV.
The peak around 0 eV arises from electrons being created close to electrodes
and terminated there and electrons created close to the PS1 or PS2, where the
acceleration due to the electric �eld is not strong any more.

termination can be found in �gure 5.5. Here it can be assured that the initial primary
electrons follow a tritium β-decay energy distribution (�gure 5.5a blue) and the secondary
electrons an energy distribution due to ionization (grey) by visual con�rmation. Further-
more, it can be double-checked that the electric potentials are set correctly at 19 kV by
having a look at the energy distributions of the electrons at their termination (�gure 5.5b),
which both peak at an energy of 19 keV.
The energy distribution of all electrons which can reach the PS2 and be contained in the
ROI can be found in �gure 5.7a. A projection of a cluster event, terminated at PS2, to the
detector can be found in �gure 5.6c as well as the �gure of a simple ring �t in 5.6a. This
can be done for all simulation clusters. The histogram of their mean radii can be used to
get information on how the cluster events appear within the PS’s volume (�gure 5.6b).
Furthermore, the total number of secondary electrons, produced by scattering of the
primary electron o� residual gas molecules (H2), can be investigated. Figure 5.7b shows
an energy dependent number of secondary electrons and �gure 5.7c con�rms this nearly
linearly dependent behavior by an exponential �t. For a condensed view of the input and
output parameters of the simulations, table A.1 may be useful.
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Figure 5.6.: Simulated cluster properties. a): Simple ring �t by counting the frequency
of the radii of the events within one cluster and �tting with a Gaussian distri-
bution. b): Histogram of all �t cluster radii. This visualizes the probability of a
cluster appearing at a certain radius. For electrons being generated homoge-
neously in the �ux tube, a larger number of events is expected with increasing
radius. c): Events within one cluster projected on the FPD.
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Figure 5.7.: Storage simulation ROI and number of secondary electrons per pri-
mary. a): Energy spectrum of electrons being terminated at PS2 (grey). As
in a measurement, a ROI cut is performed. b): For each simulation and corre-
sponding initial primary electron energy, the produced number of secondary
electrons is visualized. c): The number of secondary electrons is binned and
represented by the mean of the bin as a data point. The standard deviation
of the data within one bin is the error. Then a �t is performed, leaving out
the last ten data points, because the statistics are too low in this region. The
exponential �t a · exp (b · E) con�rms the linear behavior with the parameters
a = (1.98 ± 0.41)10−2, b = 1.05 ± 0.02 eV−1, which is also in good agreement
with simulations within the MS [MD13b].

41



5. Machine learning algorithms for active background characterization

0.0 2.5 5.0 7.5 10.0
inter-arrival time in s

10 1

100

co
un

ts
 / 

bi
n 3 10 9 mbar

2 10 11 mbar

(a)

0 25 50 75 100
inter-arrival time in s

10 4

10 3

10 2

10 1

co
un

ts
 / 

bi
n 3 10 9 mbar

2 10 11 mbar

(b)

Figure 5.8.: Inter-arrival times at di�erent pressures with density normalized to 1. a):
Time scale up to 10 s. b): Time scale up to 100 s.

5.2 Construction of training set
In order to evaluate the performance of the di�erent algorithms two training data sets
are constructed one at elevated pressure (3×10−9 mbar) and one at nominal pressure
(4×10−11 mbar). This is done by combining the data from the storage simulations (section
5.1) with sampled data according to measurements at both elevated (subsection 5.2.2) and
nominal pressure (subsection 5.2.3).

5.2.1 Known characteristics of cluster events
The cluster events are distinguished from normal background events by looking at the
distribution of inter-arrival times. Under the assumption, that normal background events
are independent, uncorrelated, and follow a Poisson process, their inter-arrival distribution
should follow an exponential distribution. The proof, based on [Kos14], can be found
in appendix A. In a logarithmic representation, the distribution therefore should fall o�
linearly. However, the correlated cluster events tend to have lower inter-arrival times,
leading to a second and di�erent exponential part in the distribution. This e�ect can
be enhanced by arti�cially increasing the pressure in the spectrometers, which causes
scatterings of the stored electrons o� residual gas molecules to be more likely. Therefore the
mean-free path length is decreased and ultimately the mean time between two ionization
processes is also decreased. In the case of low pressure, the distribution of the inter-arrival
times transforms and becomes more �at, making it nearly impossible to distinguish cluster
events from normal events (see �gure 5.8).
In a cluster analysis, the frequency of inter-arrival times of the events are therefore counted
and plotted in a logarithmic representation and then the time-threshold for the cluster
algorithm can be read out of this plot (see �gure 5.10 for an example).
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Figure 5.9.: Exponential �ts to inter-arrival times at di�erent pressures. a): Ele-
vated pressure, parameters in table 5.1. b): Nominal pressure, parameters in
table 5.2.

Table 5.1.: Fit A· exp(−t/τ ) to the counted inter-arrival times (density normalized
to 1) at elevated pressure.

Name Value Error
Fit1 A 1.66 1.15
Fit1 τ in s 0.23 0.16
Fit2 A 0.17 0.56
Fit2 τ in s 6.61 34.39

Table 5.2.: Fit A· exp(−t/τ ) to the counted inter-arrival times (density normalized
to 1) at nominal pressure.

Name Value Error
Fit1 A 0.02 0.69
Fit1 τ in s 46.18 36.40
Fit2 A 0.01 0.97
Fit2 τ in s 77.29 50.01
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Sampling of data

In order for the training data to have similar properties as the inter-arrival distribution of
the measurement, the distribution of measurement data is �t. Then the inter-arrival times
of the simulation data are sampled from this �t distribution. Hereby Fit1 corresponds to
the �t of smaller inter-arrival times under the assumption, that these events are purely
cluster events. Analogously, Fit2 corresponds to purely uncorrelated background events at
larger inter-arrival times (�gure 5.9).

5.2.2 Elevated pressure
The sampled simulation data is derived from the measurement with the FPD runs 35160 -
35164. In a �rst step, measurement data with an elevated pressure is used, because the
times between two ionization processes are shorter than at lower pressure. This makes
electrons due to ionization distinguishable from the normal background events by counting
the frequencies of the time di�erence of two consecutive events. Then this distribution is
�t with two exponential distributions (�gure 5.9a). The �rst one describes the probability
distribution of ionization inter-arrival times and the second one the distribution of inter-
arrival times of normal background events. The �t parameters returned by iMinuit1 can be
found in table 5.1. This measurement was done at a pressure of 3×10−9 mbar. To derive an
analytical calculation of the mean time between two ionization events, it is assumed that
the pressure in the spectrometers in equilibrium can be estimated via the ideal gas law

p ·V = N · kb ·T , (5.6)

where p is the pressure, V the volume, N the number of particles in the volume, kb the
Boltzmann constant andT the temperature. Expressing the number of particles as a density

nv =
N

V
(5.7)

allows one to rewrite this equation with the mean free path length of an electron 〈x〉,
which describes the average length an electron can propagate before scattering with a
residual gas molecule, with a scattering cross section σ

〈x〉 =
1

nv · σ
, (5.8)

p =
kbT

〈x〉 σ
, (5.9)

〈x〉 =
kbT

pσ
. (5.10)

The β-electrons of tritium most likely have a kinetic energy of about Ekin = 2 to 5 keV.
To include higher energetic electrons, an average of 10 keV is assumed in all calculations,

1Python interface [IMi18] for the minimizer Minuit [JR75].
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which results in a velocity of

γ =
Ekin
mc2 + 1, (5.11)

β =
√

1 − 1/γ 2, (5.12)
v = β · c = 0.195 · c . (5.13)

(5.14)

Using v = 〈x〉
〈t〉 , equation 5.10 can be expressed as

〈t〉 =
kbT

v · pσ
, (5.15)

where 〈t〉 is the mean time between two ionization processes and has an impact on the
automatic derivation of the distance measure parameter of the Density-Based Spatial Clus-
tering of Applications with Noise (DBSCAN) algorithm introduced in section 5.4 [EK96]. In
all analytical calculations for the mean time between two ionization processes, an average
kinetic energy of 10 keV, an average cross section of 10−21 m2 for both argon and hydrogen
(5.4a) and a room temperature of 20 ◦C is assumed. For more detailed calculations, also
considering the di�erent ionizations cross sections, the reader is referred to the appendix A.

Using equation 5.15 and a pressure of 3×10−9 mbar yields a mean time between two
ionization processes of 0.23 s. This can be compared to the �t parameter τ of Fit1 (�gure
5.9, table 5.1), because this parameter is also the expectation value of the exponential
distribution (E [X ] = τ ) and therefore represents the mean time between two consecutive
events. The value obtained by the �t is τ = 0.23±0.16 s and is therefore in good agreement
with the calculated value of the mean time between two ionization processes.

In a next step, the number of cluster and non-cluster events in FPD runs 35160 - 35164
is derived, by using the DBSCAN algorithm with a �xed set of hyper parameters. The
total rate of both cluster and non-cluster events over the total time of the measurement is
calculated, as well as the number of clusters and number of cluster events.
The two �t distributions are then used to sample simulation data, having the same signa-
ture of inter-arrival times as the measurement data by using rejection sampling. First, the
number of total events Nsim is speci�ed. Then the total time (of the sample measurement
data) Tsim is calculated by scaling with the observed rate Rmeas from the measurement

Tsim =
Nsim
Rmeas

. (5.16)

For every non-cluster event, an inter-arrival time τnon-cluster is sampled from Fit2 (�gure
5.9a, table 5.1). Then these times are added up (cumulative sum) to obtain the timestamp
tnon-cluster,j of each non-cluster event.

tnon-cluster,j =

i=j∑
i=0

τnon-cluster,i (5.17)
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The cluster events are treated di�erently: A start timestamp is drawn uniformly between
0 and the total time tcluster,j ∈ U (0,Tsim), under the assumption that cluster events are
distributed uniformly in time. Next, a random cluster from the simulation data is selected.
The number of events k in this cluster is then subtracted from the cluster event budget,
which was determined by using the cluster algorithm on measurement data. The times-
tamps of the events within the cluster are derived by sampling the inter-arrival times from
Fit1 (�gure 5.9a, table 5.1) and adding them to the start timestamp

tcluster,j+k =
i=k∑
i=0

τcluster,j+i . (5.18)

This process is repeated until the budget of cluster events is less than 0, meaning a cluster
rate close to the one obtained in the measurement is reached.

5.2.3 Nominal pressure
In the same way as in subsection 5.2.2, a training set simulating a low pressure measurement
is constructed. Here, the runs 35173 - 35189 are used as reference data for the inter-arrival
times and the cluster rate. As discrimination between cluster and non-cluster events is
not as easy as in the elevated pressure regime, the calculated mean time between two
ionization processes corresponding to a pressure of 1.5×10−11 mbar is used as a starting
parameter for the �rst �t. The �t value of 46.18 ± 36.40 s (�gure 5.9b, table 5.2) agrees
quite well with the calculated one 47.52 s, however the errors of the �t parameters are
quite large (table 5.2).

5.3 Previous algorithm
The idea to distinguish cluster events from normal background events is to use the char-
acteristic of the inter-arrival time distribution at elevated pressure (section 5.2.1). This
clustering algorithm has been used extensively (together with an elevated pressure in the
spectrometers) to identify cluster events [Frä10, Sch14, Har15, Ahm16]. However, the
algorithm used in this thesis does not make use of the accidental detection parameter ∆T
[Har15]. This parameter does only have a minor impact on the overall performance of the
algorithm. The algorithm is based on two parameters:

1. delta_t: The maximum time between events to be considered as within a cluster.

2. min_samples: The minimum number of events within a cluster to be considered as a
cluster.

A major drawback of this algorithm is the delta_t. The value is usually derived by looking
at the inter-arrival times of background events and set to a value where the exponential
distribution of the inter-arrival times of normal background events does apply no longer
(�gure 5.10). At low pressure, the manual choice of delta_t becomes di�cult (�gure 5.9b).
However, as shown later, the hyper parameters of this algorithm can still be optimized
for the low pressure regime with the aid of the analytically calculated time between two
ionization events.
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Figure 5.10.: Inter-arrival times and cut value. Inter-arrival times of background events
at an elevated pressure. At around a time of 0.3 s, the exponential distribu-
tions can be separated into cluster events below the cut (red) and normal
background events above the cut.
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Figure 5.11.: Schematic sketch of the cluster algorithm’s working principle.
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Cluster detection

The cluster detection is straightforward (illustrated in �gure 5.11):
1. Start at event 1 with time t1. Check if the inter-arrival time τ1 = t2 − t1 is smaller

than the reference delta_t. If true, tag events as clusters and continue with event 2.
If false, continue and start again with event 2.

2. Check for all following events if the inter-arrival time is smaller than delta_t. The
algorithm terminates if the condition is no longer met. The number of events tagged
as a cluster are then counted. If this value is larger than the minimum cluster-size-
threshold, these events are tagged as a cluster,otherwise they are not tagged.

In the sketch (�gure 5.11) if min_samples is, for example, 5 all events besides event 8 have
inter-arrival times below the given threshold delta_t and are tagged as a cluster.

The advantages of this algorithm are that it works well at an elevated pressure, it is
easy to understand, and it is reasonable fast. However, if pressure decreases and the
mean time between two ionization events becomes larger, determining the time-threshold
manually becomes di�cult and can lead to a higher misclassi�cation rate. Another major
drawback is that this univariate approach only considers correlations in time. However,
the storage simulations in section 5.1 have shown that the secondary electrons, produced
by scattering, will leave a ring pattern on the detector due to the magnetron movement of
the primary electron and therefore have a correlation in radius. This is where the new
approach tackles the problem to give a superior classi�cation of the background events.

Hyper parameter estimation

In general, the performance of an algorithm is derived by comparing the event prediction
of the algorithm to its true label (cluster or non-cluster). This allows four di�erent combi-
nations2 (table 5.3):

• True Positive (TP), events that were classi�ed correctly as cluster events.

• True Negative (TN), events that were classi�ed correctly as non-cluster events.

• False Negatives (FN), events that were classi�ed incorrectly as non-cluster events.

• False Positive (FP), events that were classi�ed incorrectly as cluster events.

Next, a measure of success is de�ned. The goal of this measure is to quantify how well
a classi�er can predict cluster events and normal events compared to the true labels.
Therefore a low number of FP and FN and a high number of TP and TN is favorable. The
measure is de�ned by the sum of TP and TN and further modi�ed by taking the negative

2In the case of binary classi�cation (0,1).
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of the sum and adding the sum of the false values.

M = TN + TP, (5.19)
M− = −M, (5.20)

M�nal = M− + (FP + FN) , (5.21)
= − (TP + TN) + (FP + FN) . (5.22)

The best parameter combination will then be a minimum value of this sum (the negative
was taken, because optimizers favor determining a minimum).
In the following, a training set (section 5.2) is used to �nd the optimum parameter combi-
nation of min_samples and delta_t. For this, parameter grids of [2, 10] ⊗ [0.1, 0.4] s and
[2, 10] ⊗ [0.4, 0.8] s are evaluated. In �gure 5.12, the sum (equation 5.21) is shown for each
corresponding parameter combination. The lowest misclassi�cation rate is achieved by
the combination min_samples = 7 and delta_t =0.8 s.
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Figure 5.12.: Parameter estimation previous algorithm. Parameter grids and the mea-
sure of success (sum) are displayed. Smaller values of the sum indicate better
performance (red areas) and bigger values worse performance (blue area). a):
Smaller delta_t values. b): Higher delta_t values.

Table 5.3.: Typical binary (0,1) classi�cation outcome. The predicted event labels by
the algorithm are compared to the true simulation labels. The diagonal entries
represent true classi�cations and the o�-diagonal false ones.

predicted predicted
0 1

simulation 0 TN FP
simulation 1 FN TP

49



5. Machine learning algorithms for active background characterization

5.4 Unsupervised approach
Considering additionally the spatial correlation of cluster events produced by stored
electrons makes the cluster algorithm more robust against misclassi�cation. The process
from the raw data to the tagged cluster events after application of the algorithm is split
into two parts. The �rst one (subsection 5.4.1) describes the algorithm’s working principle.
The second one (subsections 5.4.2, 5.4.3) describes the data preparation, and parameter
optimization of the algorithm.

5.4.1 Cluster algorithm (DBSCAN)
There are two types of clustering algorithms. Partitioning algorithms divide the space into
k non-overlapping subspaces. All events within one subspace then belong to the same
cluster. A prominent application is the k-means algorithm, where the space is divided
into k Voronoi regions with k centers of gravity. Each event is then assigned to its closest
center of gravity. Therefore the shape of these clusters is heavily restricted because the
cluster space is convex. A major drawback of this type of algorithms is that they require
the number of clusters as an input parameter. Therefore the user should have some prior
knowledge of the dataset, which is often not the case.
On the other hand hierarchical clustering algorithms decompose the data space into a
dendrogram, which is a tree representation where the space is split iteratively into smaller
subsets until a termination condition is met. A native approach would be to calculate the
distance for every point, resulting in a distance matrix

Dij = d(qi ,qj), 0 < i, j < n (5.23)

and then grouping events with a distance lower than the threshold-distance together.
However, the computational e�ort of this approach would scale quadratically with the
number of events O(n2).
An alternative approach is density based and divides a k-dimensional space S into clusters
and noise. A precise explanation of DBSCAN can be found in [EK96], here a more visual
presentation will be given (�gure 5.14a and 5.14b). At �rst, a random point p is selected.
Then every point, which is reachable wrt. ϵ (the maximum distance between two points),
and Nmin (the minimum number of core points) to p is calculated. If p is a core point,
points which are reachable within ϵ are a cluster, and if p is a border point the points are
not a cluster. The algorithm then continues with a non-visited point.
In this thesis, the scikit-learn implementation of the DBSCAN algorithm is used [PV11,
Dev18].
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Figure 5.13.: Overview of di�erent clustering algorithms on toy datasets of the
scikit-learn library ([LNB18, PV11]). Although several algorithms may
seem to be suitable for the speci�c use-case, a big advantage of DBSCAN is
to separate clusters from noise.
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Figure 5.14.: Working principle of DBSCAN algorithm. a): Starting from a random
point p, the space is checked for other points within distance ϵ (circle with
radius ϵ). b): Result of the algorithm, the high density regions (red) are events
within one cluster, other points are noise (grey).
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5.4.2 Data preparation
The cluster algorithm uses two parameters as input variables (predictors):

• timestamp of the event, and

• radius of the pixel where the electrons hit the FPD.

While the former already comes as an output of BEANS1, the radius has to be derived
from the pixel which was hit. This is done by assigning the center of each pixel to (x ,y)
coordinates and calculating the radius via r 2 = x2 + y2.
However, these two variables have di�erent scales (time of the measurement can be
O

(
103) s versus radius O

(
10−2) m) and most unsupervised cluster algorithms need the

data to be scaled to have mean 0 and variance normalized to 1, otherwise they will have
di�culties interpreting the input data correctly.
An overview of unsupervised clustering algorithms is given in �gure 5.13. Most cluster
algorithms have the disadvantage that the number of clusters have to be de�ned beforehand
and serve as an input parameter to the algorithm (e.g. k-means clustering). This is
not the case for the DBSCAN algorithm, which is similar to the previous algorithm,
however extended towards multi-dimensionality. It also has a min_samples threshold and
additionally a distance measure ϵ as input parameters. In particular the distance measure
allows for further improvement compared to the previous algorithm. By deriving this
parameter analytically from the pressure, it is possible to use this algorithm at lower
pressures.
For a suitable distance measure, the user has several choices such as the Mahalanobis
distance, Euclidean distance, correlation etc. [Dev18]. The Euclidean distance was chosen
for simplicity. Therefore the maximum distance between two points considered to be in
the same cluster is given by

d(t1,2, r1,2) =
√
((t2 − t1)2 + f · (r2 − r1)2), (5.24)

(5.25)

Here, f is a scaling factor transforming the unit of r to match the unit of t . Since the radii
of the FPD pixels stretch from 0.00375 m to 0.045 m, di�erences in radius have a negligible
impact on the distance measure (equation 5.24). As mentioned earlier, cluster events due
to stored electrons also have a correlation in radius, therefore it does not make much
sense to consider two consecutive events, where the �rst one hits the outer most ring and
the second one the most inner ring, to be within the same cluster. For this reason, the
radii have to be scaled to have bigger impact on the distance measure. Since the primary
electrons have di�erent cyclotron radii in the di�erent spectrometers, this scaling can be
set accordingly.

1Building Analysis Sequence (BEANS) is a data collection and analysis framework for KATRIN.
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To make this algorithm dependent only on the pressure, this scaling factor is also derived
from the mean time between two ionization events and set to

• MS: f =0.2·l · 〈t〉∆rmean

• PS: f =0.4·l · 〈t〉∆rmean

where ∆rmean is the mean average distance of the detector rings, which are not equally
spaced. On the downside this puts a higher penalty on the inner rings, since they are
broader, and a lower penalty on the outer rings. On the upside the algorithm is then
only dependent on the pressure. Due to the higher magnetic �eld in the analyzing plane
of the PS, electrons have smaller cyclotron radii (equation 5.3) compared to the main
spectrometer and therefore a higher penalty term was chosen. To provide an input value
for ϵ ,

ϵ = l · 〈t〉 , l = 7. (5.26)

was chosen, because the distribution of times between two ionization processes may most
likely be asymmetric, particularly having a tail towards large times for high primary
electron energies. The derivation of the optimal value will be described in subsection 5.4.3.
In �gure 5.15 the scaling is visualized. Without scaling (blue) the algorithm would cluster
every event into the cluster, even if the event is not related to a cluster. The scaling leads
to a broadening of the data points (grey), forming more and less dense regions which can
be better distinguished.
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Figure 5.15.: Representation of a cluster event in the event space of radius and time.
The blue points have unscaled radii. By scaling the radii (grey), the order
of radii di�erence and time di�erence becomes similar, which makes cluster
events more distinguishable from other background events. Unit of r for the
grey events is not meters here, but seconds.
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Figure 5.16.: Parameter estimation DBSCAN algorithm. a): Large parameter grid of a
small training data set. b): Small parameter grid of a larger training data set.

5.4.3 Derivation of optimal parameters
The two optimal parameters of the DBSCAN algorithm (initially ϵ and min_samples, later
modi�ed to length and min_samples) are derived. This is done in a brute-force approach,
looping through every combination of length and min_samples ([1, 100] ⊗ [2, 100]). The
clustered data is then evaluated according to equation 5.21. A plot for the parameter
combinations and the corresponding value of the sum can be found in �gure 5.16a as well
as a zoom in �gure 5.16b. The parameter grids are interpolated for visualizing the trend of
the sum, in reality the combinations are always of integer type. The minimum obtained is
a length of about 7 and min_samples between 5-6, which corresponds to misclassifying
only 691 events false, corresponding to a percentage of 691/999417=False/True=0.07 %.
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5.5 Supervised approach
Distinguishing cluster events from normal background events is a classi�cation problem.
Either the event belongs to a cluster or not. There is a large number of classi�cation
algorithms, ranging from simple and easy interpretable methods such as Linear Discrimi-
nant Analysis (LDA), over the popular out-of-the-box methods such as Support Vector
Machines (SVMs), and tree methods, to deep-learning methods such as neural networks.
In this approach a Boosted Decision Tree (BDT) is used, as in �rst attempts the results
looked more promising than the output from a convolutional neural network (CNN).
In the following, a quick introduction to tree-based methods will be given in subsection
5.5.1, followed by the application to simulation data and a performance evaluation in
subsection 5.5.3. The performance evaluation is based on the simulation output described
in section 5.1, which is used as a training sample.

5.5.1 Theory
The information summarized in this section is based on [JW17, HTF17].
The basic idea of tree based supervised learning methods is, to divide the predictor SpaceV
into a number of simple regions by segmenting it according to splitting rules. Decision trees
are suitable for both classi�cation and regression because the principle is similar. Trees
are grown upside down using recursive binary splitting, which means that by applying a
split criterion the predictor spaceV is divided into two smaller, non overlapping subsets of
V . In the next step these subsets are again divided into two smaller subsets. This process
is repeated until a termination criterion is reached, such as the maximum number of
observations within a node contains fewer than a threshold number of observations or the
maximum depth of the tree is reached. These nodes are also called terminal nodes or leaves
of the tree. The cut point s on each cut is chosen such that a measure of optimization is
minimized. In the case of a regression tree, this is for example the residual sum of squares
(RSS)

RSS =
n∑
i=1
(yi − ŷi)

2 , (5.27)

where yi is the i-th value of the variable to predict, and ŷi = f (xi) is the predicted value
from the �t model f . In the case of classi�cation the Gini index

G =
K∑
k=1

p̂mk(1 − p̂mk) (5.28)

or the cross entropy

D = −
K∑
k=1

p̂mk log(p̂mk), (5.29)

is used, where p̂mk is the proportion of training observations from the k-th class within
them-th region of the data. Figure 5.18 visualizes that both measures take on small values,
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Figure 5.17.: Bias-variance tradeo�. Figure inspired by [For18].

if p̂mk is either close to 0 or 1, meaning that this node has a high purity and contains
predominantly observations with the same class label. Therefore the split is set at the
position s , where these indices are minimized. The measure of the classi�er used in this
work is set to the Gini index G.

Bias-variance tradeo�
Models �t to data can su�er from error, which can be decomposed into

Err (x) =
(
E

[
f̂ (x)

]
− f (x)

)2
+ E

[(
f̂ (x) − E

[
f̂ (x)

] )2
]
+ σ 2

e (5.30)

= Bias2 + Variance + irreducible error (5.31)

where f̂ (x) is an estimate of the model f (x), which describes the true relationship
Y = f (X ) + ϵ [HTF17]. Bias error describes the o�set of predicted values by the model to
the correct values and the variance error the spread of the predicted values. In �gure 5.17
a visual representation is given. If the true model is known and we have in�nite data to
repeatedly adapt the model, it is possible to reduce both errors to 0. However, in reality
this is not possible and there is a tradeo� between bias and variance. If we optimize our
model to represent the �t data too much, it is likely that this model’s prediction accuracy
will su�er if new data is spread di�erently than the �t one (over�tting, variance error), i.e.
our model is too complex for the data. If we choose a model that is too simple and can
therefore not extract all important features of the data, an o�set of predicted values to the
correct values is present (under�tting, bias error).

Since trees obtained by recursive binary splitting are likely to over�t the data, a reg-
ularization method similar to the Lasso regression [HTF17] is used. In a �rst step, a large
tree T0 is grown and then made smaller by cutting o� branches and leaves, which is also
called pruning. A subtree T ⊂ T0 corresponds to each value of a non-negative value α ,
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such that ∑
m=1

G + α · NT (5.32)

=
∑
m=1

K∑
k=1

p̂mk(1 − p̂mk) + α · NT (5.33)

is minimized. NT is the number of terminal nodes in tree T . For α = 0, this will result in
only the training error. However, with increasing α , the measure favors smaller trees, as
trees with larger NT have higher measures. Therefore α represents a trade-o� between
training error and tree size. The parameter α can be obtained by using k-fold Cross-
Validation (CV). k-fold CV is an approach to avoid over�tting the training data. The
observations are divided into k non-overlapping regions (illustrated in �gure 5.19). Then
the algorithm is trained on all except the i-th sample, which is used to test the trained
model. This process is repeated for all k regions. The total error is then estimated by the
mean of all single errors

CVk =
1
k

k∑
i=1

errori . (5.34)

Since autocorrelation is present in the case of cluster data (event i is correlated with event
i − 1), the k-fold CV splitting is not done randomly, but ordered in time.

Another method to avoid over�tting is boosting, which is similar to bagging. In bag-
ging the training data is re-sampled (bootstrapped) and a di�erent tree is �t for each of
these independent samples. These trees are then combined to a single predictive model.
The general idea of boosting is to combine the output of several weak classi�ers (output
only slightly better than random guessing) to powerful ones. In order to do so, a weak
classi�er is sequentially applied to repeatedly modi�ed versions of the data. The prediction
of these sequence of classi�ers is then weighted, where the output from good classi�ers is
weighted more and vice versa [HTF17]. Boosting in the context of trees means that trees
are grown sequentially, i.e. each tree is grown using information of the prior tree. The
BDT algorithm has three hyper parameters:

• Number of trees B.

• Shrinkage parameter λ, which controls how fast the algorithm learns.

• The interaction depth d , which controls the interaction order of variables, because
with d = k , k splits are performed and therefore k variables can interact at most.
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Figure 5.18.: Gini and cross entropy index as a function of node purity p̂mk . The indices
take on small values for p̂mk being either close to 0 or 1, which corresponds
both to a high node purity.
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Figure 5.19.: Schematic �gure of a k(=3)-fold CV process. The initial data is split into
k non-overlapping regions of about the same size. Then the algorithm is
trained on the data, leaving the �rst of the k-parts out for testing this trained
algorithm and calculating a measure of performance. This procedure is then
repeated for every k-parts. The �nal performance measure is then the mean of
the k-measures. Most supervised learning algorithms su�er from over�tting
the data, which makes the algorithm vulnerable to outliers. CV is a procedure
to maintain a solid bias-variance tradeo� [HTF17].
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5.5.2 Data preparation
In order to train the BDT model on data, the data needs to include at least one predictor.
First, the data from the detector readout is cut to include only the timestamps (time)
and channel (pixel_number). With the help of a channel→ radius table, the channel is
then transformed to radius (r). Furthermore, the time between two events is taken as a
third predictor variable (Interarrival). To improve node purity and therefore prediction
accuracy, the predictor space is enhanced by three more variables: The di�erence in radius
of event k and k + 1 (r_diff1), as well as di�erence in time and radius of event k and k + 2
(Interarrival2, r_diff2). Therefore the BDT will map a six dimensional space onto a one
dimensional space V 6 → V 1, where in the training data set the binary output { 0, 1 } ∈ V 1

is also known to the algorithm. After the algorithm is trained, this output variable is
then predicted using the input from the six predictor variables. The output values are
probabilities of the event being a non-cluster (0) or cluster (1) event, p ∈ (0, 1).

5.5.3 Application to simulation data at elevated pressure
The hyper parameters of the BDT are estimated by a grid search 3-fold CV. A �rst parame-
ter grid is de�ned by n_trees ⊗ learning_rate [1, 10, 100, 500, 1000] ⊗ [1, 0.1, 0.05, 0.01]
and for each combination a 3-fold CV on the simulation data is performed. The mean
score is calculated for each parameter combination and the highest score was yielded by
500 trees and a learning rate of 0.01 (�gure 5.20a). This grid search is then repeated with
values closer to this �rst optimal parameter combination, which yielded 1000 trees and a
learning rate of 0.00464 as the best combination (�gure 5.20b). The �nal combination is
used to perform a 3-fold CV on the simulation data and checked for the TP classi�cation
compared to the FP classi�cation, which is shown in a so called Receiver Operating Char-
acteristic (ROC) curve in �gure 5.20c. This curve ideally should have a strong increase in
the True Positive Rate (TPR) when the False Positive Rate (FPR) is low, which means the
classi�cation algorithm achieves a high classi�cation rate of TPs while only allowing a
small number of misclassi�cations with FPs. Furthermore, the performance of the algo-
rithm can be evaluated by visualizing the decision score and the cut value of the classi�er
in �gure 5.20. Another possibility to evaluate the performance is to look at the FPs and FN
in dependency of various cut values (�gure 5.20d). Usually it is desired to want them both
as low as possible, however there can be cases when it is desirable to allow an increased
misclassi�cation to obtain an increased TPR. In the appendix (section A.2.3), the same
results for the training data at nominal pressure can be found.

Although it has been shown that BDT classi�ers are valid candidates for detecting clus-
ter events, a minor drawback is the cluster reconstruction. As the output of the BDT
is only 0 or 1, the a�liation of the single cluster events to speci�c clusters is not given.
To reconstruct clusters, some assumptions about the time scale of clusters have to be
made. By applying something similar as the ∆t cut mentioned earlier to the labeled data
allows an assignment of single cluster events to a cluster. While this might be easier
for smaller storage times and therefore elevated pressure regimes, in nominal pressure
regimes often multiple cluster events can happen at the same time due to the larger storage
times [Sch14]. Another and probably more fruitful approach would be to �rst apply the
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BDT for classi�cation to the raw data and then feed only the labeled cluster data (1) into
the DBSCAN algorithm, which has an automated implementation of cluster separation.

5.6 Comparison
To compare the three algorithms described in section 5.3, section 5.4 and section 5.5, a
common evaluation dataset is used. Therefore, one dataset taken at high pressure and
another one taken at low pressure have been created (section 5.2).

Elevated pressure
This dataset consists of a total of 1000108 events, where 142965 (≈15 %) are cluster events
and 857143 (≈85 %) are normal background events. The misclassi�cation rate without any
usage of a cluster algorithm would therefore be 15 %. The performance of the di�erent
algorithms is summarized in �gure 5.21. In terms of overall classi�cation, all algorithms
achieve a good performance (�gure 5.21b). However, when looking at the total number of
falsely classi�ed events, small di�erences become visible. The lowest misclassi�cation rate
is achieved by the DBSCAN algorithm, followed by the established algorithm and lastly
the BDT.
Although the established algorithm still achieves a good result, it has to be kept in mind
that this dataset represents the background at elevated pressure and the hyper parameters
were optimized using a training data set. This makes the distinction between cluster
events, which have small time di�erences between two ionization events at high pressures,
and normal background events, which have higher inter-arrival times, possible. The new
algorithms do not face this pressure problem and are therefore far more �exible. In case of
the DBSCAN algorithm, the scaling of the radii is indirectly dependent on the pressure
and in case of the BDT, the pressure can simply be used as a further predictor parameter
for training. Finally, the DBSCAN algorithm also outperforms the previous algorithm. In
the following analyses (chapter 6), cluster events at an elevated pressure are tagged using
the DBSCAN algorithm with optimized hyper parameters.

Nominal pressure
In the following analyses (chapter 6), cluster events at nominal pressure are tagged using
the DBSCAN algorithm with optimized hyper parameters. Although the BDT outperforms
the DBSCAN at nominal pressure, the DBSCAN is chosen due to the ease of automatic
cluster separation.
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Summary
In this chapter, it has been shown that supervised and unsupervised statistical methods
are valid tools for identifying cluster events. In fact, due to the unique composition of the
training data set, the hyper parameters of the previous algorithm could be optimized to
achieve better performance in cluster detection as well. It has been shown that a larger
time window together with a higher cluster size threshold achieve a better performance
than just setting the time window cut where the inter-arrival times distribution is distin-
guishable from the normal background distribution. However, both at elevated as well
at nominal pressure, this conventional algorithm is outperformed by the new algorithms
described in section 5.4 and section 5.5. These new algorithms therefore represent a
robust and sensitive method to detect cluster events due to tritium β-decay within the
spectrometers. While the DBSCAN algorithm is by now the most convenient, the BDT
has the most potential. To unlock the full potential of this supervised learning algorithm,
a well suited predictor variable choice, as well as a clever cluster reconstruction process
are necessary.

As an outlook, a background data analysis work�ow (�gure 5.23) could implement these
new cluster detection methods in an automatic way. First, the pressure from either one of
the spectrometers is read out as slow-control data for the runs to be analyzed, then the
average of these pressure values is taken and fed into the algorithm. Together with the
FPD data the algorithm then can detect all cluster events in the dataset automatically.
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Figure 5.20.: Performance plots of the BDT classi�er. a), b): Heatmap of di�erent
parameter grids, to visualize classi�cation precision for di�erent parameter
con�gurations. c), d): ROC curve for 3-fold CV in c) and false classi�cations
in dependence on the cut value in d). The ROI indicates region of favored cut.
e), f): e) shows the decision score of the classi�er and the probability value
cut �gure f) shows if the probability, as an output of the classi�er for each
event being a normal background event (close to 0) or a cluster event (close
to 1), would be cut at a speci�c value, how many of these observations would
be true positives.
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5.6. Comparison

(a) (b) (c)

Figure 5.21.: Algorithm comparison at elevated pressure. a): Performance of the al-
gorithms in terms of FPs and FNs. The DBSCAN algorithm has the overall
lowest numbers of false events, followed by the previous algorithm and the
BDT. b): Performance of the di�erent algorithms in terms of true and false
events. All algorithms have a good performance, because the number of true
events is several orders higher than the number of false events. Di�erences
are only slightly visible here. c): Performance of the algorithms in terms
of misclassi�cation

(
False
True

)
. All algorithms have a low misclassi�cation rate,

but the DBSCAN algorithm again performs best, followed by the previous
algorithm and the BDT.

(a) (b) (c)

Figure 5.22.: Algorithm comparison at nominal pressure. a): Performance of the dif-
ferent algorithms in terms of FPs and FNs. The BDT has the overall lowest
numbers of false events, followed by the DBSCAN and the previous algorithm.
b): Performance of the algorithms in terms of true and false events. c) Perfor-
mance of the di�erent algorithms in terms of misclassi�cation

(
False
True

)
. The

misclassi�cation rates vary far more than in the case of an elevated pressure.
Here the BDT achieves the best performance, outreaching the previous algo-
rithm by one order of magnitude. The DBSCAN algorithm lays in between
these two, with a misclassi�cation rate of about 6 %.
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Run
Number

Raw	FPD	data
readout

Slow	control	data
-Pressure readout

BEANS
-Energy	calibration
-ROI	cut
-Multipixel cut	
(	t	<	2	#s)

-Mean	time	between
ionizations	
-Radius	scaling

-Feature	selection	(Time,	channel)
-Feature	enrichment:
channel	à radius

Mean/Median Pressure 
Inter_arrival1 =	ti – ti-1	(BDT)
Inter_arrival2 =	ti – ti-2	(BDT)
rdiff1 =	abs(ri – ri-1)	(BDT)
rdiff2 =	abs(ri – ri-2)	(BDT)

DBSCAN	
prediction

BDT	
prediction

Figure 5.23.: Cluster analysis work�ow. Data is accessed via the RunNumber. BEANS
collects and processes the data. Then the data is read in Python, selecting
the required predictors (time and pixel/channel). FPD Channel is converted
to radius and the mean/median pressure calculated. Depending on the
algorithm, the data is either enriched with four additional predictors (BDT)
or the mean time between ionization events is calculated from the pressure

and the radius scaled accordingly in the case of the DBSCAN.
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6 Cluster identi�cation

6.1 Characteristics of cluster events

In order to explain the predictor variable choice of the BDT in section 5.5, both the BDT
and DBSCAN algorithms are applied to measurement data with the run numbers 35160 -
35171, which is a measurement of the PS background at elevated pressure p=3×10−9 mbar.
The variables time, radius, ∆r1=ri − ri−1, ∆r2, Interarrival, and Interarrival2 were
used to predict cluster events. Figure 6.1 shows the pairwise correlation coe�cients. The
high correlation coe�cient of channel and radius is natural, when considering how the
radius is derived from the pixel map. However, by using both channel and radius, the
classi�er does not gain any new information. Therefore the channel was dropped as a
variable. Additionally, the energy was dropped as it has no correlation with either the
output variable (is_cluster) or any of the other predictor variables and is consequently
not helpful for the classi�er. The remaining variables either have a small correlation with
the output variable, or correlation among the other predictors.

For further investigations, the pairwise joint-distribution plots of the predictor variables
were investigated (�gure 6.2). Here it can be seen that cluster events tend to have high
peaks in the predictor variables ∆r1, ∆r2 around 0. This feature will be investigated in
the following more precisely. Recalling the change in the exponential distribution of
cluster-events as the current cluster-event identi�cation characteristic, it will be shown
that this sharp peak in the radius di�erence of consecutive events is also a strong indicator.

In order to motivate the distribution of ∆ri , it is assumed that the set of background
events { x }i=ni=1 can be regarded as i.i.d. (independent, identically distributed) random vari-
ables. Taking a look at the distribution of radii (�gure 6.3a) it can be considered as either
an exponential distribution (r ∼ Exp(λ)) or as a Gaussian distribution (r ∼ N (µ,σ )). Here
an exponential distribution was chosen. If r is distributed exponentially (Gaussian), the
di�erence of two independent, identical exponential distributions is given by the Laplace
distribution La(λ) (normal distribution N (µ2 − µ1,σ

2
2 +σ

2
1 )). The proofs can be found in the

appendix A. Under the assumption that normal background events are uncorrelated and
independent, their distribution should follow a La(λ) function. However, cluster events
are correlated and the characteristic ring structure causes a narrow peak around zero in
the distribution of radius di�erences. The sum of these two distributions can therefore be
�t with a Laplace function plus a narrow Gaussian (�gure 6.3b). After application of both
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6. Cluster identi�cation

supervised or unsupervised cluster-cut, the narrow peak around zero is much smaller and
therefore indicates an e�ective reduction of background events due to clusters (�gure 6.3c,
6.3d).

To show that the new algorithms also work at nominal pressure, the distribution of
radii after the cluster cut of en elevated pressure measurement and nominal pressure
measurement (run number 35362 - 35378) was investigated and is shown in �gure 6.3e
and �gure 6.3f. It is clearly visible that the excess in the peak value is reduced to �t the
distribution more naturally, both for the measurement at elevated pressure and nominal
pressure. This is a strong indicator that the new algorithms also work at nominal pressure.
For pairwise plots of the nominal pressure measurement, the reader may have a look at
�gure 6.4.
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Figure 6.1.: Predictor variable correlation coe�cients. a): after the cluster cut is ap-
plied through the DBSCAN algorithm. b): after the cluster cut applied is
through the BDT algorithm. Due to the di�erent approaches, the correlation
matrix di�ers slightly. Furthermore, the inter-arrival time after the DBSCAN
cluster cut is reprocessed to be the time between two consecutive events with
the same label. Therefore, its correlation also di�ers slightly from the one after
the BDT cluster cut.
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6. Cluster identi�cation

Figure 6.2.: Pairwise plots of the predictor variables at elevated pressure. The diago-
nal elements are histograms (density normalized to 1), the upper elements of
the diagonal are scatter plots, where blue labels indicate non-cluster events
and grey labels cluster events. On the lower part of the diagonal, two dimen-
sional histograms are shown to illustrate dense data regions, with black color
indicating a high number of counts in this bin and white color a low number
of counts.
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Figure 6.3.: Distribution of radii and di�erence of radii. All histograms are normal-
ized to 1. a): As the widths of the detector rings are not equally spaced, the
normalization has a penalty on the broader inner rings, which causes the
distribution of the radii to follow an exponential (or half-Gaussian) distribu-
tion. b): Distribution of radius di�erences of all events. A clear excess at 0
is visible. c) and d): Distribution of radius di�erences after DBSCAN cluster
cut. Non-cluster events on the left and cluster events on the right. e), f):
Stacked histograms of non-cluster and cluster events at elevated pressure e)
and nominal pressure f).
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6. Cluster identi�cation

Figure 6.4.: Pairwise plots of the predictor variables at nominal pressure. The diago-
nal elements are histograms (density normalized to 1), the upper elements of
the diagonal are scatter plots, where blue labels indicate non-cluster events
and grey labels cluster events. On the lower part of the diagonal, two dimen-
sional histograms are shown to illustrate dense data regions, with black color
indicating a high number of counts in this bin and white color a low number
of counts.
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6.2. In�uence of NEG material on radon cluster rate in the main spectrometer

6.2 In�uence of NEG material on radon cluster
rate in the main spectrometer

The background rate in the MS with ≈400 milli-counts per second (mcps) currently exceeds
the limit for the designed KATRIN sensitivity of 0.2 eV. While the remaining background
component is still under investigation (section 4.5), radon emanating from the PS’s NEG
pumps into the MS’s volume may have a non-negligible in�uence on the background rate.
In order to estimate this impact, a reference background measurement with opened valve
between PS and MS and another one with closed valve were conducted, both at elevated
pressure p=3.1×10−9 mbar.
With the the help of the tuned cluster algorithms, the cluster rate of both measurements
is determined and compared. This comparison will give insight into the overall radon
contribution of the PS’s NEG material to the MS background.
Open valve
When the valve is opened, an overall rate of 432.29±0.85 mcps is observed. Applying the
DBSCAN algorithm with a scaling factor of 0.2 (MS scaling) instead of 0.4 (PS scaling) at
elevated pressure yields a cluster rate of 17.85±0.17 mcps, which corresponds to a fractional
contribution of 4.13 % from radon to the non-radon background. The average number of
clusters per day is 160.21±11.65 (�gure 6.5). In �gure 6.6a the rate with di�erent binnings,
the projection of the rate and a �t, the residuals of the �t and the FPD pixel distribution
over all runs is shown. After application of the DBSCAN cluster cut the rate distribution is
more Poissonian (�gure 6.6b). For detailed information about cluster size, cluster duration,
and FPD maps of clusters have a look at appendix �gure A.5.
Closed valve
With the valve closed, an overall rate of 421.51±1.00 mcps is observed. Applying again
the DBSCAN algorithm for cluster cuts reveals a cluster rate of 12.38±0.17 mcps, which
corresponds to a fractional contribution of 2.94 % from radon to the non-radon background.
The average number of clusters per day is 125.73±12.74 (�gure 6.5). In �gure 6.7a the rate
with di�erent binnings, the projection of the rate and a �t, the residuals of the �t and the
FPD pixel distribution over all runs is shown. After application of the DBSCAN cluster
cut the rate distribution is more Poissonian (�gure 6.7b). For detailed information about
cluster size, cluster duration, and FPD maps of clusters have a look at appendix �gure A.6.

Table 6.1.: In�uence of NEG material on radon cluster rate in the MS.

Valve Rate in mcps Cluster rate in mcps clusters per day
open 432.29±0.85 17.85±0.17 160.21±11.65

closed 421.51±1.00 12.38±0.17 125.73±12.74
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Figure 6.5.: Number of clusters per day (hour) in theMS. a): Valve is opened. b): Valve
closed.

Summary
The information for opened and closed valve is summarized in table 6.1. Removal of the
NEG material in the PS would lead to a decrease of the background rate in the MS by
about 17.85 − 12.38 = 5.47 ± 0.34 mcps, which is about 1.5 % of the total background rate
in the MS. However, removing the NEG material from the PS would potentially lead to
an overall increased background rate in the PS, as the e�ective pumping speed is two
orders of magnitude smaller than before. This may have a negative impact on the UHV
conditions and therefore increases the background rate. At the same time the contribution
due to radon decay induced cluster events would be smaller. This can further increase the
sensitivity on tritium decays in the PS, which also would leave a cluster signature on the
detector.

72



6.2. In�uence of NEG material on radon cluster rate in the main spectrometer

(a)

(b)

Figure 6.6.: Summary plot of runs 35435 - 35476, with bin sizes of one hour (blue) and
one day (red). The projection of the hour binned rate is shown in the top right
corner with a Gaussian �t in grey. Bottom left shows the residuals between �t
and data points and bottom right the pixel distribution for all runs. a): Before
cluster cut and b) after cluster cut.
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(a)

(b)

Figure 6.7.: Summary plot of runs 35477 - 35506, with bin sizes of one hour (blue) and
one day (red). The projection of the hour binned rate is shown in the top right
corner with a Gaussian �t in grey. Bottom left shows the residuals between �t
and data points and bottom right the pixel distribution for all runs. a): Before
cluster cut and b) after cluster cut.
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6.3. Sensitivity study with the pre-spectrometer on tritium decays

6.3 Sensitivity study with the pre-spectrometer
on tritium decays

A major goal of this thesis is to �nd sensitive methods for tritium detection within the
spectrometer volumes, in order to enable safe long term tritium operation. A general
approach would be to just take regular background measurements before and at some
point during tritium operation and then compare the measured rates of both. If they di�er
signi�cantly, it may be due to tritium. However, in the previous chapter, the characteristic
ring pattern on the detector of stored electrons due to tritium have been utilized to derive
a more sensitive method.
In this chapter, the result of di�erent background measurement settings will be presented
which have a di�erent signi�cance on the tritium sensitivity. An overview of the various
measurements, which have been conducted can be found in the appendix (�gure A.14).
Tritium can reach the PS either as ions or molecules (most likely HT, minimal fraction of
T2). The ions are expected to be accelerated towards the downstream cone electrode and
be implanted there or hit the hull. Although the tritium ions are implanted there, they are
neutralized and can evaporate back into the volume.

6.3.1 Estimation of sensitivity

In the following measurements cluster rates will be determined. These rates are then used
to estimate a sensitivity to tritium decays within the �ux volume.
The number of tritium atoms within the PS volume depends on the gas �ow from the CPS
into the PS, for which the design report states a limit of

QCPS→PS = 2.5 · 105 1
s , (6.1)

under the assumption of a reduction factor of 1014 between WGTS and PS1 magnet.
However, recent CPS simulations have yielded a better performance of the CPS in terms
of tritium adsorption [FR18]. Instead of the reduction factor of 107 stated in [KAT05], a
reduction factor of 1011 is expected. This leads to a combined reduction factor of 1018

between WGTS and the PS1 magnet. Therefore, the gas �ow is expected to be four orders
smaller than the one in the design report, QCPS→PS

sim = 251
s

The main molecule considered here will be HT, which gets pumped out by TMPs or the
NEG material, but it can also decay. The rate change of tritium atoms within the PS is
therefore given by the di�erential equation

dN

dt
= − λTN (t)︸ ︷︷ ︸

decay

−
SPS

V PSN (t)︸    ︷︷    ︸
pumped out

+ QCPS→PS︸    ︷︷    ︸
const. gas �ow into PS

(6.2)

= −(λT + k)N (t) +Q
CPS→PS, with,k = SPS

V PS (6.3)
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Figure 6.8.: Number of tritium atoms. a): Number of tritium atoms over time. b):
Number of tritium atoms for a given cluster rate. Equation 6.9 was used and
scaled with the cluster rate in mcps.

which is solved by

N (t) =
QCPS→PS

λT + k
(1 − exp (−(λT + k)t)) . (6.4)

SPS here denotes the e�ective pumping speed of combined NEG and TMP pumps (table
6.2) and V PS = 8.5 m3 the PS volume. The saturation of this function is the maximum
number of tritium atoms in the PS

Nmax =
QCPS→PS

λT + k
= 46423. (6.5)

The maximum number is reached nearly instantly, which can be seen in �gure 6.8a.
The background rate to which this amount of tritium corresponds to, is given by

RT (t) = N (t) · λT · E [ne(E)] · RV(�ux), (6.6)

because the radioactive decay of tritium follows an exponential distribution and λT is the
expectation value of this distribution. Furthermore, E [ne(E)] denotes the mean number of
secondary electrons produced by a stored primary β-electron (�gure 5.7c). The average
value here is 179, but with a symmetric cone electrode con�guration, only half of these
electrons reach the detector, the other half travels back to the source section. Therefore,
an observed rate of R =1 mcps due to tritium corresponds to

NT =
R

λT · E [ne(E)]
=

1 s
1000 s · 1.8 · 10−9 · 90 = 6.193 · 103 (6.7)

atoms in the sensitive volume. To derive the total number of atoms in the total PS volume,
the number has to be multiplied with the ratio of the total PS volume to the �ux volume.

RV(�ux) =
VPS

V�ux,PS
=

8.5 m3

4.06 m3 = 2.09 (6.8)

NT (tot) = NT · RV(�ux) = 46.42 · 103 (6.9)
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6.3. Sensitivity study with the pre-spectrometer on tritium decays

Table 6.2.: Expected number of tritium atoms in the total PS volume, with pumping
speed, decay and constant �ux into the PS being in equilibrium. Pumping
section reduction factor 1014 from [KAT05] and 1018 based on [FR18].

Reduction factor (1014) Reduction factor (1018)
TMPs and NEG (SPS ≈ 45771 l

s ) 46423 5
TMPs only (SPS ≈ 1305 l

s ) 1628352 163

However, it has been considered to take the getter material out of the PS, to reduce the
radon background (Rn emanates into the volume from this material). This would reduce
not only the e�ective pumping speed of the PS from 45771 l

s to 1305 l
s [Sch18], but also

the cluster rate due to radon. Together with the two reduction factors (design report and
simulation), the number of tritium atoms in the total PS volume is given in table 6.2. As
long as the saturation of tritium atoms in the total PS volume is smaller than 46.42 · 103

corresponding to a rate of 1 mcps, it is nearly impossible that an elevated background due
to neutral tritium can be measured, which would be the case for the results from the CPS
simulation.
If the cluster rate of future measurements is twice as high as the one obtained in the
reference background measurements in subsection 6.3.2 or subsection 6.3.3, it is likely the
case that this additional rate is due to stored tritium.

6.3.2 Surface method
In the �rst method the PS1 magnet is switched o�, which causes the magnetic �eld lines to
point towards the upstream side surface of the PS. If tritium decays there, the β-electrons
are guided by the magnetic �eld lines to the detector and are counted there. However, only
about 50 % of the PS’s surface (upstream side) can be covered by this method although
more surface activity is expected on the downstream side, as tritium ions are accelerated
towards the electrodes. Furthermore it has to be taken into account, that the magnetic
�eld lines do not reach through the full metal upstream cone electrodes, but only to the
wire electrodes. A schematic drawing of this setup, as well as the relevant magnets and
electrodes can be found in �gure 6.9.
An overview plot of this measurement (�gure 6.10a) shows an overall high rate, but also a
rise of the latter within the measurement. When the PS1 is turned back on the magnetic
�eld lines start to bend down towards the PS1 and then no longer point towards the surface
any more, but the volume. Thus the rate also starts to fall, because much fewer electrons
are created in the volume. A time cut is performed to evaluate the rate before the rise
in rate at about t=4000 s (�gure 6.11a). The events are then binned in minute and hour
intervals, projected, and �t with a Gaussian distribution. The residuals are plotted on the
lower part and on the lower right the corresponding pixel distribution can be found, which
shows a hotspot consisting of three pixels. This hotspot contributes to a big part of the
overall rate, but is not understood in a physical way so far.
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Nevertheless, with a rate of ≈ 1000 counts per second (cps) it is impossible to be sensitive
to tritium decays, which is why a second measurement with the same con�guration was
done to check for reproducibility of the results (�gure 6.9). The rate overview (�gure 6.10b)
shows a drop in rate, which is due to the failure of the air coil system. When the system
comes back up, the rate is slightly higher compared to before. Here, a time cut is also
performed to remove the data during the air coil failure. This time, the rate (≈30 cps) is
one order of magnitude smaller than before, but the hotspot still exists (�gure 6.11b). Due
to the lack of reproducibility of the results, this measurement setup cannot be used as a
sensitive method to measure the background contribution due to tritium decays.
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Figure 6.9.: Schematic drawing of the PS and its relevant magnetic and electric
components for the surface con�guration.
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Figure 6.10.: Overview plots surface method measurements. a): Rate overview plot
of run 35153 - 35159. Besides an overall high rate, the measurement also
shows a strange behavior because the rate suddenly starts to rise higher. Rate
decreases due to the ramp-up of PS1 magnet. b): Rate overview plot of run
35385 - 35390. Rate is stable at �rst, but drops when the air coil system fails.
After system is operational again near the end of the measurement, the rate
is slightly higher compared to before.

79



6. Cluster identi�cation

800

900

1000

ra
te

 in
 c

ps
minute binning
hour binning

rate projection

0 1000 2000 3000 4000
time in s

2

0

2

re
sid

ua
ls 

in
 

0.05 0.00 0.05
position in m

1
2
3
4
5
6
7

co
un

ts
 / 

pi
xe

l (
10

6 )

(a)

24

26

28

30

ra
te

 in
 c

ps

minute binning
hour binning

rate projection

0 5000 10000 15000
time in s

2.5

0.0

2.5

re
sid

ua
ls 

in
 

0.05 0.00 0.05
position in m

25
50
75
100
125
150
175
200

co
un

ts
 / 

pi
xe

l (
10

2 )

(b)

Figure 6.11.: Summary plots for surface method measurements. a): Summary plot
of runs 35153 - 35159, with bin intervals of one minute (blue) and one hour
(red) (upper left). The projection of the minutely binned rate is shown in
the top right corner with a Gaussian distribution �t in grey. Bottom left
shows the residuals between �t and data points and bottom right the pixel
distribution for the whole run. b): Summary plot of runs 35385 - 35390,
with bin intervals of one minute (blue) and one hour (red) (upper left). The
projection of the minute binned rate is shown in the top right corner with a
Gaussian distribution �t in grey. Bottom left shows the residuals between �t
and data points and bottom right the pixel distribution for the whole run.
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Figure 6.12.: Schematic drawing of the PS and its relevant magnetic and electric
components for the volume con�guration.

6.3.3 Volume method

The measurement setup checking for background due to tritium decays in the volume
(6.12) may not be able to be sensitive to the area on the surface, where most tritium is
expected, but this con�guration has the advantage of an overall low background. In the
following it will be shown that this method is the more sensitive one.
Measurements with this con�guration have been carried out before, during, and after the
FT campaign. At �rst, all measurements at an elevated pressure are presented, followed
by measurements at nominal operational pressure ≈ 10−11 mbar.
Elevated pressure p=3.1×10−9mbar

In the �rst measurement con�guration, the upstream cone electrode is set on a more
negative potential (-19 kV) than the wire- and downstream cone electrode (-18.9 kV) in
order to re�ect the electrons moving back to the source towards the detector. Therefore
an increased rate compared to a symmetric electrode con�guration is expected. The rate
summary plot in �gure 6.14a clearly shows spikes in the rate, which is a �rst indicator of
cluster events (radon), which results in a non Poissonian distribution of the background.
Furthermore, a pixel hotspot in the lower right part of the detector is visible which has been
observed in several other measurements as well. During the FT campaign, a background
measurement while ramping up the CPS magnetic �eld has revealed a high dependency
of the pixel hotspot on the magnetic �eld strength. In �gure 6.13a, the background rate
and CPS current is shown for the time the CPS magnets are ramped up. In �gure 6.13b,
the value pairs are binned with a bin size of 60 s and a moving average with a window
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Figure 6.13.: CPS current and rate while ramping up the CPS magnetic �eld in �g-
ure a). b): CPS current and rate with a bin width of 60 s. Poisson uncertainties
on the rate and Gaussian uncertainties on the current are assumed. In red, a
moving average for the time-series with a window size of 10 bins is shown.

size of ten bins visualizes the trend that the rate increases with the current. This is also
con�rmed by a high correlation factor of r ≈ 0.88 between the rate and the current.
Next, the cluster cut with the DBSCAN algorithm is applied, which leads to a signi�cant
decrease of the spike structures in the rate and therefore to the expected Poisson distributed
background (�gure 6.14b). The total background rate for this setup is 190.61± 1.69 mcps
and the cluster rate is 46.71± 0.84 mcps, leading to a rate of 143.90± 1.47 mcps after the
cluster cut. In the appendix A.3.2, additional information about the clusters can be found.
The number of tritium atoms to which this cluster rate equals can be read out from �gure
6.8b. Four di�erent scenarios are possible:

• i): With NEG material and gas �ow from the design report [KAT05] (solid blue).

• ii): Without NEG material and gas �ow from the design report [KAT05] (dotted
blue).

• iii): With NEG material and gas �ow from simulation [FR18] (solid red).

• iv): Without NEG material and gas �ow from simulation [FR18] (dotted red).

According to the scenarios i)-iv) the number of tritium atoms in the volume this cluster
rate would equal can be read out from �gure 6.8b.
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Figure 6.14.: Summary plots of runs 35160 - 35171 before a) and after cluster cut b) at
elevated pressure in the PS.
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Nominal pressure p=1.5×10−11mbar
At low pressure, cluster identi�cation with the previous algorithm is nearly impossible.
However, as shown in chapter 5, the machine learning algorithms perform well. The
electro-magnetic con�guration of the PS is the same as in �gure 6.12. In �gure 6.15a
and �gure 6.15b the rate, its distribution, and the pixel distribution are shown for the
run numbers 35171 -35189. For more detailed information about the clusters �gure A.10
may be useful. The total background rate for this setup is 16.62± 0.26 mcps and the
cluster rate is 10.06± 0.21 mcps, leading to a rate of 6.56± 0.17 mcps after the cluster cut.
Similar results were obtained by a second measurement with the same con�guration
(�gure A.11). Here, the total background rate is 15.29± 0.39 mcps and the cluster rate is
8.32± 0.29 mcps, leading to a rate of 6.97± 0.26 mcps after the cluster cut. This similarity of
the results shows that the background and its properties are stable and can be reproduced,
which is favorable since these measurements are intended to be reference measurements.
Similar results are achieved at a slightly higher pressure (3×10−11 mbar) with a total
background rate of 21.20± 0.30 mcps and the cluster rate is 9.03± 0.19 mcps, leading to a
rate of 12.17± 0.23 mcps after the cluster cut. For detailed cluster information have a look
at �gure A.12.

Summary
The goal of the work described in this chapter was to:

• Investigate the characteristics of cluster events for both di�erent pressures and
target devices (PS and MS).

• Find a sensitive measurement con�guration to detect the presence of tritium in the
spectrometer section.

Hereby, the excess around zero in the distribution of radius di�erences of consecutive
events has been found in addition to the known characteristics of inter-arrival times distri-
bution. This new feature allows one to approximate the cluster cut e�ciency independent
of the pressure, compared to the pressure dependent inter-arrival times.
In order to �nd a sensitive measurement setup to detect the presence of tritium in the
spectrometer section, reference background measurements with two di�erent methods
have been carried out. The method where the magnetic �eld lines point towards the
surface of the PS generally su�ered from a high and unstable count rate. The other method
where the �eld lines are con�ned to the volume shows not only better reproducibility,
but also the rate is several orders of magnitude lower compared to the surface method.
Due to the increased performance of the machine learning algorithms, the cluster rate can
be determined more precisely which is a direct measure for the amount of tritium in the
spectrometer section.
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Figure 6.15.: Summary plots of runs 35173 - 35189 before a) and after cluster cut b) at
nominal pressure in the PS.
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7 Conclusion

KATRIN is a next generation neutrino mass experiment with the ambitious goal to de-
termine the neutrino mass with a sensitivity of m(νe) = 0.2 eV at 90% C.L. by precision
electron spectroscopy near the tritium β-decay spectral endpoint. As the statistics of
signal electrons in this energy region are low, maintaining a low background is key to
achieving this unprecedented sensitivity. Electrons accompanying radon decays in the
spectrometer volumes have a high probability of being stored in the �ux tube for up to
thousands of seconds due to the MAC-E �lter design. While moving back and forth in the
�ux tube, these stored electrons can produce hundred of secondary electrons via scattering
o� residual gas. The secondary electrons escape the trap quickly due to their low energy
and appear on the detector as events with a correlation in time and radius, due to the
unique magnetron motion of the primary electron. Electrons originating from tritium
β-decay hereby have the same signature.
A time-cut based clustering algorithm was developed in order to discriminate these cluster
events from normal background events and estimate the overall contribution of cluster
events. As the precision of this cluster identi�cation algorithm is key to sensitive back-
ground characterization, novel approaches have been developed in this thesis.

A training data set which is based on both measurement and simulation data has been
used to compare and optimize both the previous algorithm, as well as the unsupervised
and supervised machine learning methods. For meaningful results, the quality of the
training data set is important, which is why storage simulations of electrons up to 18.6 keV
within the PS, generated by tritium β-decays, were carried out. Here, the most recent
beamline con�guration, as well as realistic magnetic �eld settings were used in order to
achieve realistic results. Moreover, the analytical derivation of the mean time between two
ionization events has been con�rmed with measurements at elevated (3×10−9 mbar) and
nominal pressure (1.5×10−11 mbar). Due to this unique training set, the hyper parameters
optimization of the previous algorithm has revealed that larger time window cuts than
previously used, lead to an increased classi�cation score.

While the previous algorithm needs the user to provide a reasonable choice of the time win-
dow input parameter, the parameters of the DBSCAN algorithm are derived automatically
and analytically by only providing the pressure as an input parameter. The pressure for the
corresponding measurement can be read out from a pressure sensor in the spectrometers
and the parameter could then be represented by the mean or median of these pressure
values. The results from this cluster cut have the advantage of being nearly independent
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7. Conclusion

of the pressure. While the hyper-parameter input of the DBSCAN is derived from the
underlying physics of ionizations processes, the BDT as a supervised learning method
adjusts its splits in order to optimize classi�cation precision of the training data. This
makes the BDT a generally �exible method, but also the most dependent one on a high
quality training data set.

With the optimization of these algorithms for cluster identi�cation, the excess in the
distribution of the di�erence of the radii of consecutive events at zero as a novel, and
independent feature of cluster events has been discovered. In this work, this was used
to estimate the contribution of radon emanating from the getter material of the PS into
the MS volume. These measurements have revealed, that this e�ect has a non-negligible
in�uence on the background rate of the MS. The NEG material causes an additional rate of
5.47 ± 0.34 mcps, which equals about 1.5 % of the total MS background rate. Furthermore,
a robust and more sensitive measurement setup to detect decays of neutral tritium within
the PS volume has been tested. With this method it is possible to immediately estimate
the contribution of tritium to the background in the PS and take counter-measures, before
most of the tritium reaches the MS and causes a non-negligible rise in the background
rate.

For further improvements of the DBSCAN algorithm, the scaling of the radius can be
optimized. As the pixel rings are not equally spaced, the average of the ring distances
is used for scaling of the individual pixel radii. For a more precise result, every pixel
ring could have its own scaling factor. In case of the BDT algorithm, a new de�nition of
predictor variables as well as the parameter tuning of the interaction depth could lead to
further cluster identi�cation precision.
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A Appendix

A.1 Proof of Theorems
Proof. Let Nt be the number of events arriving in [t] and Xt the time it takes for one
additional event to occur. Then (Xt > x) means that no event has arrived in [t , t + x],
which is equivalent to (Nt = Nt+x ).

(Xt > x) ≡ (Nt = Nt+x ) or by law of complement (A.1)
P(Xt < x) = 1 − P(Xt > x) = 1 − P(Nt = Nt+x ) = 1 − P(Nt+x − Nt = 0). (A.2)

Since the increments Nt+x ,Nt of a Poisson process are independent stochastic variables, it
follows

P(Nt+x − Nt = 0) = P(Nx = 0) = exp(−λx) · (λx)
0

0! = exp(−λx) (A.3)

1 − P(Xt > x) =

{
1 − exp(−λx), for t ≥ 0
0, for t < 0 (A.4)

which is the cumulative distribution function (cdf) of the exponential distribution.

Proof. Let X ,Y ∼ Exp(λ) be independent random variables, with the probability density
function (pdf) given by

f (x) =
1
λ

exp
(
−
x

λ

)
, λ,x > 0 (A.5)

and the characteristic function by

φX (t) =
1

1 − λit , λ > 0. (A.6)
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Then the random variable’s Z = X − Y characteristic function is given by

φZ (t) = E [exp (−it(X − Y ))] (A.7)
= E [exp(−itX ) exp(−it(−Y ))] (A.8)

independence = E [exp(−itX )]E [exp(−it(−Y ))] (A.9)
= φX (t) · φY (−t) (A.10)

=
1

1 − λit
1

1 − λi(−t) (A.11)

=
1

1 + λ2t2 , (A.12)

which is the characteristic function of the Laplace distribution La(λ) with the pdf

f (λ) =
1

2λ exp
(
−
|x |

λ

)
. (A.13)

Proof. Let X ,Y ∼ N(µi ,σ 2
i ) be independent random variables, with the characteristic

function given by

φX (t) = exp
(
itµx −

1
2t

2σ 2
x

)
(A.14)

Then the random variable’s Z = X − Y characteristic function is given by

φZ (t) = E [exp (−it(X − Y ))] (A.15)
= E [exp(−itX ) exp(−it(−Y ))] (A.16)

independence = E [exp(−itX )]E [exp(−it(−Y ))] (A.17)
= φX (t) · φY (−t) (A.18)

= exp
(
itµx −

1
2t

2σ 2
x

)
· exp

(
−itµy −

1
2t

2σ 2
y

)
(A.19)

= exp
(
it(µx − µy) −

1
2t

2(σ 2
x + σ

2
y )

)
(A.20)

which is the characteristic function of the normal distribution N(µx − µy,σ 2
x + σ

2
y ) with the

pdf

f (µ,σ ) =
1
√

2πσ
exp

(
−

1
2

(x − µ
σ

)2
)
. (A.21)
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A.2 Appendix to machine learning

A.2.1 Simulation Parameters

Table A.1.: Simulation input parameters and condensed output parameters.
parameters Simulation 1 Simulation 2

beamline con�guration FT FT
pressure 3·10−9 mbar 4 · 10−11 mbar

enhancement 106 108

integrator symplectic symplectic
MS electrodes grounded grounded

PS upstream electrode -19 kV -19 kV
PS downstream electrode -19 kV -19 kV

PS hull electrode -18.6 kV -18.6 kV
terminator_z_min -16.46375-(10−8) m -16.46375-(10−8) m
terminator_z_max -12.10375+(10−8) m -12.10375+(10−8) m

number of started simulations 103 103

successful simulations 986 979
number of secondary electrons 149437 175501

number of electrons terminated at PS2 70605 (47 %) 78182 (44 %)
number of electrons in the ROI 63535 (42 %) 73485 (42 %)

number of electrons scaled to the detector 62900 (42 %) 72832 (41 %)

A.2.2 Calculation ofmean time between ionization processes
In the calculations of the mean time between two ionization events in equation 5.15, it is
assumed that the electron has a kinetic energy of 10 keV, and the mean cross section for
that energy is ≈ 1.38 · 10−21 m2 (�gure 5.4a). To prove, that these assumptions are valid, a
more detailed analysis is necessary. At low pressures (≈ 10−11 mbar), mainly hydrogen
atoms and molecules are the dominating isotopes contributing to the pressure. A �rst
approximation is, that at a pressure of 1 · 10−11, H and H2 both have half of the fraction
and therefore both a partial pressure of 0.5·10−11 mbar. If the pressure now is arti�cially
increased due to pumping in argon, the partial pressure of argon can be derived from the
total pressure p =

∑
∂pi

∂pAr = p −
∑

i=H,H2

∂pi . (A.22)

Therefore, the single ionization cross sections of Ar, H and H2 can be taken into account
individually. Rewriting equation 5.15 to

〈t〉 =
kBT

βc · pσ =
kBT

βc
∑

i=H,H2,Ar

1
∂piσi

. (A.23)
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Taking into account the energy dependence of the scattering cross section, equation A.23
becomes

〈t〉 (E) =
kBT

β(E)c
∑

i=H,H2,Ar

1
∂piσi(E)

. (A.24)

Introducing the fraction of the partial pressure to the total pressure

wi =
∂pi
p
, (A.25)

equation A.24 can be written as

〈t〉 (E) =
kBT

β(E)c · p
∑

i=H,H2,Ar

1
wiσi(E)

. (A.26)

This represents not an average mean scattering cross section, but a weighted mean scat-
tering cross section, taking into account that at high pressures, the cross section of argon
dominates. In �gure A.1c and �gure A.1d this impact becomes visible, since the mean
times between two ionization processes are smaller in �gure A.1d than in �gure A.1c.

To show that a valid mean time between two ionization events to a corresponding pressure
is given by the approximation in equation 5.15, �gure A.1a can be useful. It shows, that at
constant pressure (3 · 10−9 mbar), the mean time between two ionizations below 0.3 s cover
energies between 40 eV and 10 keV. Considering the fact that the primary electrons with
energies below 100 eV can escape the magnetic trap of the PS, this value as an upper limit
will cover the main energy range of a tritium β-primary electron while cooling down due
to scattering.
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Figure A.1.: Mean time between ionization processes in dependence of tempera-
ture, pressure and energy. a): For ordinary environmental temperatures
(0◦ C - 20◦ C), the mean ionization time does not vary much. b): The pressure
has a much bigger impact on the mean time between two ionization processes.
c): The mean time between two ionization processes in dependence on pres-
sure and energy is displayed. For the calculation, the mean ionization cross
section is taken on the left, and the weighted mean ionization cross section
on the right (d)).

A.2.3 Hyper parameter estimation at nominal pressure
The training data set (section 5.2.3) for this parameter tuning has a size of 10075. It is
therefore two orders of magnitude smaller than the one used in the elevated pressure
regime (section 5.2.2 ), simply due to performance reasons.
A.2.3.1 Previous algorithm
In the same procedure as described in section 5.3 at elevated pressure, the hyper pa-
rameters are estimated for nominal pressure. Here the parameter grid is de�ned by
delta_t ⊗ min_samples [70, 90] s⊗ [5, ..., 20] and for each combination, the measure of
success (equation 5.21) is calculated. Best results are achieved by combinations around
[85, 90] s⊗ [14, 16], which is visualized in �gure A.2.
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Figure A.2.: Heatmap of the parameter grid. Smaller values of the sum indicate better
performance (red areas) and bigger values worse performance (blue area).
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A.2.3.2 DBSCAN
The input parameters for the DBSCAN algorithm are also optimized. However, as �rst
results did not look promising, the factor in equation 5.24 was also used for evaluation.
This yielded best results with a factor of f = 0.81, in comparison to the elevated pressure
with a factor of f = 0.4. In �gure A.3, the measure of success is shown with respect to the
parameters length and min_samples.
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Figure A.3.: Heatmap of the parameter grid. Smaller values of the sum indicate better
performance (red areas) and bigger values worse performance (blue area).
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A.2.3.3 BDT
The hyper parameters are estimated by a grid search 3-fold CV. The parameter grid is
de�ned by n_trees ⊗ learning_rate [500, ..., 1000] ⊗ [0.001, ..., 0.1] and for each combi-
nation a 3-fold CV on the simulation data is performed. The mean score is calculated
for each parameter combination and the highest score was yield by 1000 trees and a
learning_rate of 0.0129 (�gure A.4a). This combination is then used to perform a 3-fold
CV on the simulation data and checked for the true positive classi�cation compared to
the false positive classi�cation, which is shown in a so called ROC curve in �gure A.4c.
This curve ideally should have a strong increase in the TPR when the FPR is low, which
means the classi�cation algorithm achieves a high classi�cation rate of TPs while only
allowing a small number of misclassi�cations with FPs. Furthermore, the performance of
the algorithm can be evaluated by visualizing the decision score and the cut value of the
classi�er in �gure A.4f. Usually it is desired to want both FP and FN as low as possible,
however there can be cases when it is desirable to trade higher misclassi�cation for an
increased TPR.

96



A.2. Appendix to machine learning

10 3 10 2 10 1

learning rate

600

800

1000

n_
tre

es

0.45

0.46

0.47

m
ea

n 
te

st
 sc

or
e

(a)

0.00 0.25 0.50 0.75 1.00
cut-value

101

102

103

co
un

ts
 / 

bi
n

FN
FP
Falses
ROI
Minimum

(b)

0.00 0.25 0.50 0.75 1.00
false positive rate

0.0

0.5

1.0

tru
e 

po
sit

iv
e 

ra
te

Luck
Mean ROC (AUC = 0.78 ± 0.07)
± 1 std. dev.

(c)

0.00 0.25 0.50 0.75 1.00
false positive rate

0.0

0.5

1.0

tru
e 

po
sit

iv
e 

ra
te

Luck
Mean ROC (AUC = 0.78 ± 0.07)
± 1 std. dev.
ROC fold 0 (AUC = 0.852)
ROC fold 1 (AUC = 0.804)
ROC fold 2 (AUC = 0.692)

(d)

6 4 2 0 2
decision score

100

101

102

co
un

ts
 / 

bi
n

class 0 (non-cluster)
class 1 (cluster)

(e)

0.0 0.2 0.4 0.6 0.8
cut value

100

101

102

co
un

ts
 / 

bi
n

cluster (Signal)
no cluster (Background)

(f)

Figure A.4.: Performance plots of the BDT classi�er at nominal pressure. a):
Heatmap of parameter grid, to visualize classi�cation precision for di�er-
ent parameter combinations. b): Number of FP and FN in dependence on the
cut-value. The ROI indicates region of favored cut. c), d): Mean ROC curve
for 3-fold CV on the left and ROC curve for 3-fold CV on the right. e), f): The
probability value cut �gure 5.20f shows if the probability, as an output of the
classi�er for each event being a normal background event (close to 0) or a
cluster event (close to 1), would be cut at a speci�c value, how many of these
observations would be true positives.
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A.3 Appendix to cluster identi�cation

A.3.1 In�uence of NEG material on radon cluster rate
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Figure A.5.: Cluster information for runs 35435 - 35476 (elevated pressure), MS. a),
b): Histogram of cluster durations a) and histogram of cluster size b). c), d):
Histogram of inter-arrival times c) and rate trend of raw data and after cluster
cut with bin width of one hour is shown d).
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Figure A.6.: Cluster information for runs 35477 - 35506 (elevated pressure), MS. a),
b): Histogram of cluster durations a) and histogram of cluster size b). c), d):
Histogram of inter-arrival times on the left c) and rate trend of raw data and
after cluster cut with bin width of one hour is shown d).
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Figure A.7.: Pairwise plots of the predictor variables at elevated pressure in the MS.
The diagonal elements are histograms, the upper elements of the diagonal are
scatter plots, where blue labels indicate non-cluster events and grey labels
cluster events. On the lower part of the diagonal, two dimensional histograms
are shown, with black color indicating high counts in this bin and white color
low counts.
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Figure A.8.: Distribution of radii and di�erence of radii in the MS. All histograms
are normalized to 1. a): As the width of the detector rings are not equally
spaced, the normalization has a penalty on the broader inner rings, which
causes the distribution of the radii to follow an exponential (or half-Gaussian)
distribution. b): Distribution of radii di�erences of all events. No clear excess
at 0 is visible, compared to the distribution in the PS in �gure 6.3. Therefore
the ratio of contribution of radon induced events is smaller. c), d): Distribution
of radii di�erences after DBSCAN cluster cut. Non-cluster events on the left
c) and cluster events on the right d). e), f): Stacked histograms of non-cluster
and cluster events with valve closed e)) and opened f).
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A.3.2 Sensitivity study with the pre-spectrometer due to
tritium decays
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Figure A.9.: Cluster information for runs 35160 - 35171 (elevated pressure), PS. a),
b): Histogram of cluster durations on the left a) and histogram of cluster size
on the right b). c), d): Histogram of inter-arrival times on the left c) and rate
trend of raw data and after cluster cut with binwidth of one hour is shown d).
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Figure A.10.: Cluster information for runs 35173 - 35189 (nominal pressure), PS. a),
b): Histogram of cluster durations on the left a) and histogram of cluster size
on the right b). c), d): Histogram of inter-arrival times on the left c) and rate
trend of raw data and after cluster cut with bin width of one hour is shown
d).
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Figure A.11.: Cluster information for runs 35362 - 35378 (nominal pressure), PS. a),
b): Histogram of cluster durations on the left a) and histogram of cluster size
on the right b). c), d): Histogram of inter-arrival times on the left c) and rate
trend of raw data and after cluster cut with bin width of one hour is shown
d).

104



A.3. Appendix to cluster identi�cation

0 500 1000 1500
duration in s

100

101

N c
lu

st
er

s /
 b

in

(a)

10 20 30 40 50
cluster size

100

101

N c
lu

st
er

s /
 b

in

(b)

0 200 400 600
inter-arrival time in s

100

101

102

103

co
un

ts
 / 

bi
n total events

events after 
cluster cut

(c)

0 100000 200000
time in s

0

50

100

150

N e
ve

nt
s /

 h
ou

r total bg data
bg after cluster cut
cluster events

(d)

Figure A.12.: Cluster information for runs 40270 - 40286 (nominal pressure), PS. a),
b): Histogram of cluster durations on the left (a)) and histogram of cluster
size on the right (b)). c), d): Histogram of inter-arrival times on the left (c))
and rate trend of raw data and after cluster cut with binwidth of one hour is
shown (d)).
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Figure A.13.: Cluster manual. This sketch illustrates a work�ow for identifying the
presence of clusters, which tools are available to perform a cluster cut, and
what characteristics to look for in the data after the cluster cut.
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