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Abstract

The Karlsruhe Tritium Neutrino (KATRIN) experiment is a tritium beta decay ex-
periment designed to make a direct, model independent measurement of the electron
neutrino mass. To accomplish this task, the experiment employs precisely defined
electric and magnetic fields for particle transport and mass spectroscopy. In order to
simulate particle trajectories in the experiment, it is essential to have methods for
calculating these fields quickly and accurately. The application of the methods of di-
rect elliptic integral calculation, zonal harmonic expansion and interpolation from an
adaptive-refinement field mesh is described within the object-oriented KatrinField

framework, as well as an analysis of their comparative strengths and weaknesses in
reproducing the electromagnetic fields found in KATRIN.
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Chapter 1

Introduction

1.1 Motivation for measurement of the neutrino mass

1.1.1 Evidence for neutrino mass from flavor oscillation

The canonical Standard Model of particle physics, a theory that has successfully pre-

dicted the experimental results of almost all particle physics experiments in the past

thirty years, presupposes the neutrino to be massless. Several experiments performed

within the past decade have uncovered compelling evidence to the contrary, linking

the mass of the neutrino to an observable phenomenon known as flavor oscillation. In

the commonly accepted 3-neutrino model, flavor oscillation is the result of a neutrino

interacting according to its flavor eigenstates (| να〉, α = e, µ, τ) and propagating

through space according to its mass eigenstates (| νi〉, i = 1, 2, 3). The mass and

flavor eigenstates of a neutrino are related by the unitary Maki-Nakagawa-Sakata

(MNS) matrix Uαi:

| νi〉 =
∑

α

Uαi | να〉. (1.1)

When a neutrino is created, it is in a flavor eigenstate (| να〉). As it propagates

through space, it becomes a time-varying superposition of the three flavor eigenstates

(| ν(t)〉 =
∑

α

Cα(t) | να〉) whose amplitudes Cα(t) are determined by components

of the MNS matrix, the time of propagation, the momentum of the neutrino and

15



the mass squared differences between neutrino mass eigenstates. Upon detection via

charged-current weak interaction1, the neutrino wave function collapses back into one

of the three flavor eigenstates with the probability P (να)(t) = |Cα(t)|2.
In the case of two-flavor oscillations, Uαi can be represented as a simple rota-

tion matrix dependent upon a single mixing angle θ, and the probability of neutrino

oscillation is expressed as

P (να → νβ) = sin2 (2θ)× sin2

(

1.27∆m2
12L

E

)

, (1.2)

where ∆m2
12 = m2

1−m2
2 is the mass squared difference of the mass eigenstates in eV 2,

L = c·t is the distance from the neutrino’s creation to detection in kilometers, and E is

the neutrino energy in GeV [1]. For three-flavor oscillations for Dirac neutrinos, there

are six parameters intrinsic to the neutrino that determine is oscillatory properties:

two mass squared differences (∆m2
21 ≃ ∆m2

⊙, ∆m2
32 ≃ ∆m2

atm), three mixing angles

(θ12, θ23, and θ13), and a CP violating phase (δ).

Experimental Observation of Neutrino Oscillation

Common sources for the experimental measurement of neutrino oscillation are neutri-

nos created in the Earth’s atmosphere, neutrinos created from fusion reactions within

the sun, and neutrino production from nuclear reactors and particle accelerators. Due

to the different parameters present in these sources (such as varying energy spectra

and differing baselines), experiments measuring neutrino oscillation from these dif-

ferent sources will have different sensitivities to the physical parameters sin2(2θ) and

∆m2 described in Equation 1.2. In addition, these experiments can quantify neu-

trino oscillations by either an excess or deficit in the expected neutrino flux from

a given source, classifying these experiments as “appearance” and “disappearance”

experiments.

Measurements of the solar neutrino flux have been ongoing since the late 1960’s

[2]. Using both radiochemical and real-time detection methods, a deficit in the solar

1an interaction mitigated by a W± boson
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νe flux has been confirmed to high precision in several experiments, including the

Homestake experiment [2], SAGE [3], Gallex [4], Kamiokande and SuperKamiokande

[5] [6]. In 2001, the SNO collaboration finally solved the solar νe deficit problem by

measuring both the νe and total ν (νe+νµ+ντ ) solar fluxes, and confirmed that, while

the total ν flux is consistent with theoretical prediction, there is a substantial deficit

in the solar νe flux [7]. The observation was a strong indicator for νe oscillation and

was later confirmed by the KamLAND experiment [8], setting the most competitive

limits on ∆m2
⊙ to date (see Table 1.1).

The dominant process for the creation of atmospheric neutrinos is from charged

pion decay in the upper atmosphere,

π± → µ± + νµ (ν̄µ) , (1.3)

which creates a muon and a neutrino. The muon then decays:

µ± → ν̄µ (νµ) + e± + νe (ν̄e) , (1.4)

producing an electron, a muon neutrino and an electron neutrino. Due to these

processes, the ratio of the flux of νµ to νe at the Earth’s surface without oscillation

should be approximately 2 : 1. Several experiments, including NUSEX [9], Soudan

[10], IBM [11], Frejus [12] and Kamiokande [5], measured a significant deficit in the

expected ratio of atmospheric νµ to νe [6]. The best known limits on atmospheric

νµ disappearance has been measured by Super-Kamiokande, providing evidence for

νµ oscillation [13]. By employing directional analysis of the Super-K data in tandem

with neutrino energy reconstruction, high statistics that covered a broad spectrum

of L
E

values (see Eq. 1.2) were used to place limits on the atmospheric mass squared

difference ∆m2
atm. These results were later confirmed by the K2K experiment [14]

and by MINOS [15], placing the best current limits on ∆m2
atm (see Table 1.1). It is

interesting to note that the current evidence for atmospheric νµ disappearance is at

> 15σ [16].
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neutrino value C.L. experiment
parameter

θatm 45◦ ± 8◦ 90% Super-Kamiokande [13]
∆m2

atm (2.86± 0.32) · 10−3 eV2 90% K2K [14], MINOS [15]

θ⊙
(

34.4+1.3
−1.2

)◦
68% SNO [17], KamLAND [8]

∆m2
⊙ (7.95± 0.55) · 10−5 eV2 68% KamLAND [8]

θ13 < 10◦ CHOOZ [18]

Table 1.1: Current limits on the mass squared differences of the neutrino.

1.1.2 Significance of neutrino mass

By measuring nonzero splittings between the mass eigenstates, neutrino oscillation

implies that at least two of the three neutrinos are not massless. The evidence of

massive neutrinos has given rise to several interesting questions in neutrino physics

theory. The three most prominent questions related to neutrino mass are:

• are neutrinos Dirac (ν and ν̄ are distinct) or Majorana (ν = ν̄) particles,

• what is the ordering of the mass eigenstates, and

• what is the overall scale of the neutrino masses?

While the KATRIN experiment is designed to measure the overall scale of the neutrino

masses, a brief description of these three topics is given in order to provide a more

complete understanding of the implications of massive neutrinos.

Neutrinos as Dirac & Majorana particles

In the standard model representation, the mass coupling is represented by the second

term in the Dirac Lagrangian:

L = Ψ̄(ıγµ∂µ −mD)Ψ = 0, (1.5)

where γµ represents the µ-th Dirac matrix, and Ψ is a Dirac spinor representing the

spin states of the particle and antiparticle. Since Ψ can be represented as a sum of

chiral eigenstates,

Ψ = (PL + PR)Ψ = ΨL + ΨR, (1.6)
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the mass term in Equation 1.5 can be rewritten as

LD = mDΨ̄Ψ = mD(Ψ̄RΨL + Ψ̄LΨR), (1.7)

where the terms Ψ̄RΨR and Ψ̄LΨL necessarily vanish due to the properties of the

chiral projection operator (P̄L/R = PR/L, PLPR = 0), and mD must be real. Since

the canonical Standard Model precludes the existence of right-handed neutrinos (ΨR,

Ψ̄R), the mass term vanishes, resulting in a description of the neutrino as massless

[19].

One way to adjust the Standard Model to accommodate massive neutrinos is to

purpose the existence of right-handed sterile neutrinos, whose properties justify their

absence in experimental measurements to date. Another method describes the neu-

trino and antineutrino as the left and right-handed chiral states of a single Majorana

neutrino [20]. To understand Majorana mass, we first construct a Majorana spinor

entirely from ΨL: by noting that Ψc
R = CΨ̄T

L Lorentz transforms identically to ΨR

(where C is the charge conjugation operator), we can define Ψ = ΨL +Ψc
R [21]. Using

this spinor, we get a Lorentz-invariant mass term

LL = mL(Ψ̄LΨc
R + Ψ̄c

RΨL) + h.c. (1.8)

If we allow neutrinos to have both a Dirac and a Majorana mass, an additional mass

term can be constructed from Ψ = Ψc
L + ΨR:

LR = mR(Ψ̄c
LΨR + Ψ̄RΨc

L) + h.c. (1.9)

In its most general form (containing both Majorana and Dirac mass terms), the

neutrino mass can be represented as a combination of Equations 1.7, 1.8 and 1.9:

(Ψ̄L, Ψ̄
c
L)





mL mD

mD mR









Ψc
R

ΨR



+ h.c. (1.10)

The description of massive neutrinos as Majorana particles has many exciting
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Figure 1-1: Feynman diagram for 0νββ. This interaction is only allowed if the neu-
trino is its own antiparticle (i.e. Majorana).

implications in particle physics theory. See-saw theories involve the ratios of the in-

trinsic mass properties of the neutrino to provide justification for the unusually small

neutrino mass. In addition, many theories that attempt to explain the matter/anti-

matter asymmetry in the universe depend on Majorana nature of the neutrino. The

description of the neutrino and antineutrino as two chirality states of the same particle

also provides an explanation for why neutrinos and antineutrinos are only observed

as left and right-handed, respectively, producing a theory that does not require the

incorporation of heretofore unobserved neutrino states.

Several experiments designed to determine whether neutrinos are Majorana par-

ticles are currently in progress. These experiments exploit the fact that neutrinoless

double β-decay (0νββ), a process that is forbidden in the canonical Standard Model

but allowed if the neutrino is Majorana, has a distinctive energy signature that can

be singled out in measurement. If observed, neutrinoless double β-decay will not only

prove the Majorana nature of the neutrino, but will also be able to set competitive

limits on the mass of the neutrino. Though, to date, there is no confirmed experi-

mental evidence for neutrinos as Majorana particles2, it is not difficult to understand

the theory’s appeal.
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Figure 1-2: (A) The normal and (B) inverted hierarchy configurations for the neutrino
mass eigenstates. In each representation, the mass eigenstates are represented as a
composite of the flavor states according to the MNS matrix.

Hierarchy of the three neutrino masses

While neutrino oscillation experiments provide strong evidence for massive neutrinos,

they are only sensitive to the differences between the mass eigenstates (rather than

the masses themselves). Due to this fact, an ambiguity arises in the ordering of the

mass eigenstates. Using the mass squared differences measured in neutrino oscillation

experiments, two3 mass orderings are possible, referred to as normal and inverted

hierarchies (see Fig. 1-2). In the normal hierarchy, |∆m2
31| > |∆m2

32|, while in the

inverted hierarchy the inequality is reversed [24]. The normal hierarchy is so named

because it roughly follows the mass hierarchy of the electron, muon and tau: m1, the

most “e-like” mass eigenstate, is the lightest, while m3, the mass eigenstate that has

the largest ratio of ντ , is the heaviest. Current experiments designed to determine

which hierarchy is correct include NOνA [25] and T2K [26]. Understanding the mass

hierarchy will help to fill the gaps in our understanding of neutrino mass, and will

result in more precise constraints on the mixing angles in the MNS matrix.

2Unconfirmed evidence for 0νββ decay has been reported by [22].
3The ordering of m2

1
with respect to m2

2
can be determined by the properties of solar neutrino

measurements [23].
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Absolute mass scale

A lower limit on the mass of the heaviest neutrino mass state is obtained by allowing

the lightest mass state to be exactly zero. Since the largest mass squared difference

is given in Table 1.1, we know the mass m of the heaviest neutrino to be

m > 0.045 eV (1.11)

Many models for massive neutrinos beyond the canonical Standard Model predict the

absolute mass scale to be higher than this, however. In general, theoretical models

that incorporate neutrino mass fall into two categories: a hierarchical mass spectrum

(described in the previous Section), and a nearly degenerate spectrum4, where

m1 ≈ m2 ≈ m3 (1.12)

and mi ≥ 200 meV . Determining whether neutrinos are hierarchical or nearly de-

generate has significant impact on particle theory in general, as it is believed that

the absolute energy scale will dictate the scale of new physics beyond the standard

model [27]. To date, the most precise theory-independent techniques for measuring

the absolute neutrino mass scale involve studying the kinematics of tritium β decay

[27].

1.2 Tritium β decay experiments

1.2.1 Kinematics of tritium β decay

Tritium β decay is described by the following reaction:

3H → 3He+ e− + ν̄e. (1.13)

4The mass splittings measured in oscillation experiments are still valid in nearly degenerate
models, but are orders of magnitude less than the absolute neutrino mass.
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Noting that ν̄e is a superposition of the three mass eigenstates, the energy spectrum

of the outgoing electron in this process is

dN

dE
= C ×F (Z,E)p(E+mec

2)(E0−E)
∑

i

|Uei|2[(E0 −E)2−m2
i ]

1
2 Θ(E0−E −mi),

(1.14)

where E is the electron energy, me is the mass of the electron, p is the electron

momentum, E0 represents the maximum electron energy (corresponding to mν = 0),

F (Z,E) is the Fermi function (accounting for the Coulomb interaction between the

outgoing electron and the 3He+ nucleus), Θ(E0−E−mν) is the Heaviside step function

(to ensure energy conservation), and

C =
G2

F

2π3
cos2 θC |M |2, (1.15)

where GF is the Fermi constant, θC is the Cabibbo angle and M is the nuclear matrix

element [28]. Three properties of Equation 1.14 are particularly worthy of note, as we

will refer back to them in subsequent sections: first, the measurement of the β energy

spectrum is independent of whether the neutrino is Majorana or Dirac. Second, if

the energy resolution of the experiment is less than the splittings between the mass

eigenstates of the neutrino, the mass mν can be treated as a superposition of the

neutrino mass eigenstates that comprise ν̄e [19]. In other words, we can replace m2
ν

in Equation 1.14 with

m2(ν̄e) =
∑

i

|Uei|2m2
i , (1.16)

producing a single observable in experiment that is dependent upon all three neutrino

mass eigenstates. Finally, the count rate of electrons near the end-point energy can

be determined by Equation 1.14 to be proportional to (E0 − E)3, which quickly

approaches zero at the endpoint.
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Figure 1-3: The (A) total and (B) endpoint of the electron energy spectrum of tritium
β decay for mν = 0 eV and mν = 1 eV . The shaded region denotes the measurable
difference between the massive and massless neutrino spectra (representing only 2×
10−13 of the total β spectrum). Images taken from [28].

1.2.2 Signature of massive ν̄e

Using Equation 1.14, tritium β decay experiments measure the neutrino mass by

calculating the variance of the endpoint of the electron energy spectrum from the

mν = 0 endpoint. As depicted in Figure 1-3, the fraction of events that result in the

positive signature of a massive ν̄e is very small: for example, only 2 × 10−13 of the

emitted β decays account for the last 1 eV of the spectrum. The ability to accurately

obtain a signal for a significantly small neutrino mass is therefore strongly dependent

upon the luminosity of the tritium source, as well as the ability to precisely filter the

emitted electrons below a given energy threshold [28].

1.2.3 Impact on neutrino physics theory

Given the current range of sensitivities attainable by tritium β decay experiments, the

presence (or absence) of a signal in an experiment of this type will yield important

results to determining the nature of neutrino mass. If a signal is detected and a

value for the mass mν can be determined to a given tolerance, we will be able to

fix the absolute mass spectrum of the mass eigenstates. Because the splittings of

the mass eigenstates are an order of magnitude smaller than the current sensitivity

levels of tritium β decay experiments, the reconstructed neutrino mass will be a
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weighted average of the three mass eigenstates according to Equation 1.16 and, while

not sensitive to mass ordering, would determine that the neutrino masses are nearly

degenerate. Such a measurement could also be used in tandem with 0νββ experiments

to determine whether neutrinos are Majorana particles. The absence of a signal would

result in the most competitive limit on the absolute neutrino mass scale to date.

1.3 Summary

In the past decade we have been witness to a complete paradigm shift in our un-

derstanding of neutrinos. The confirmation of the theory of neutrino oscillation has

raised as many questions as it has answered, as the task of accommodating massive

neutrinos in the Standard Model that fit experimental measurements is a nontrivial

task. At present, the questions of the Majorana versus Dirac nature of neutrinos, the

ordering of the neutrino mass hierarchy and the absolute neutrino mass scale com-

prise the bulk of the remaining questions to be answered in neutrino physics. Tritium

β decay experiments are currently the most competitive method for determining the

absolute neutrino mass scale, whose determination would help to solve the remaining

outstanding questions surrounding the neutrino mass.
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Chapter 2

The KATRIN Experiment

2.1 Introduction

The Karlsruhe Tritium Neutrino Experiment (KATRIN) is a next-generation tritium

β-decay experiment in Karlsruhe, Germany. The goal of the experiment is to measure

the absolute mass scale of the neutrino with a sensitivity of m(νe) = 0.2 eV (90%

C.L.), an order of magnitude lower than the current established limit. Achieving

this goal requires improvements over previous direct measurement experiments in

both the tritium-decay β luminosity and the resolution of the spectrometers [27].

Since the focus of this thesis concerns the electrostatic and magnetostatic aspects of

the KATRIN experiment, the following sections serve as a general description of the

components of the experiment with respect to these topics.

2.2 Tritium Source and β Transport System

The tritium-decay β beam for the KATRIN experiment is provided by the windowless

gaseous tritium source (WGTS) (see Fig. 2-1). Ultra-cold (27 K) gaseous tritium

is injected into the middle of the 10 m long, 90 mm diameter WGTS tube, and

pumped out at the ends of the tube, creating a tritium column density ρd = 5 ·
1017 molecules/cm2. The tritium emits a β-decay luminosity of 9.5 · 1010 β/second

isotropically. These electrons are guided adiabatically to either end of the WGTS tube
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Figure 2-1: A schematic of the KATRIN beamline, including the windowless gaseous
tritium source (WGTS), the rear system and the β transport system.

by a 3.6 T magnetic field.1 The collimated electrons then enter the transport system,

where they are transported adiabatically to the spectrometers via 21 solenoids that

produce a magnetic field along the axis of the transport system of 5.6 T. In order

to restrict tritium flow into the spectrometers, the transport system contains 20◦

tilts in the magnetic flux tube, preventing line-of-sight between the WGTS and the

spectrometers [28]. The parameters of the magnets in the WGTS and β transport

system are described in Table 2.1.

2.3 Pre- and Main Spectrometers

2.3.1 Properties of a MAC-E-Filter

A MAC-E-Filter (an acronym for Magnetic Adiabatic Collimation followed by an

Electrostatic Filter) is an integrating spectrometer designed to maximize the lumi-

nosity and kinetic energy resolution of a beam of charged particles [29]. It exploits the

1The strength of the magnetic field in the WGTS is chosen be 60% of the largest magnetic field
in the KATRIN experiment, in order to produce a magnetic mirror that rejects electrons with a high
pitch angle. Electrons with a high pitch angle are unfavorable since they are more likely to multiply
scatter before leaving the WGTS.
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Magnet # J (A/mm2) Ri (mm) Ro (mm) Z1 (mm) Z2(mm)
1 150.45 111.62 148.33 -4026.99 -4853.49
2 150.45 116.5 135.53 -4829.57 -1765.33
3 150.45 115 143.55 -1743.52 -1668.48
4 150.45 115 143.55 -1628.97 -1553.93
5 150.45 116.5 135.53 -1532.12 1532.12
6 150.45 115 143.55 1553.93 1628.97
7 150.45 115 143.55 1668.48 1743.52
8 150.45 116.5 135.53 1765.33 4829.57
9 150.45 111.62 148.33 4853.49 4926.99
10 152.2 115 144.91 -5455.15 -5357.14
11 152.2 114 133.03 -6248.69 -5466.17
12 152.2 113.5 143.41 -6357.71 -6259.70
13 152.2 118 147.91 -6885.87 -6787.86
14 152.2 114 133.03 -7679.41 -6896.89
15 152.2 122 150.55 -7788.43 -7690.43
16 100.63 209.50 115 6787.86 6885.87
17 100.63 209.50 119 6896.89 7679.41
18 100.63 209.50 122 7690.43 7788.43
19 100.63 209.50 120 5357.14 5455.15
20 100.63 209.50 119 5466.17 6248.69
21 100.63 209.50 115 6259.70 6357.71

Table 2.1: Magnet specifications for the WGTS and β-transport system.

adiabatic invariance of the magnetic moment of the particle’s cyclotron orbit (defined

as the ratio of the particle’s transverse2 kinetic energy to the strength of the magnetic

field, |µ| = T⊥/|B|) for non-relativistic charged particles in a magnetostatic field [30].

The general design of a MAC-E-Filter is depicted in Figure 2-2: the entrance and

exit of the spectrometer are constrained by strong magnetic fields (Bmax) (located at

x0 and x2 in Fig. 2-2), and the field reaches a minimum (Bmin) at the spectrometer’s

center (at x1). The magnets at the entrance and exit of the spectrometer are designed

to cover the same flux tube, so that particles entering the spectrometer are confined

to helical trajectories about the resulting magnetic field lines. This results in an

initial transmission of ≈ 50%, since all charged particles with forward momentum will

follow a magnetic field line into the spectrometer. In addition, a retarding electric

field parallel to the magnetic field is formed by electrodes surrounding the flux tube,

2For this discussion, the transverse and longitudinal directions refer to directions perpendicular
and parallel to the beam line, respectively.
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Figure 2-2: General setup of a MAC-E-Filter. (Top) experimental configuration and
(bottom) the adiabatic momentum transformation of charged particle through the
filter.

with maximum potential U0 at x1.

By conservation of energy, we can equate the energy of a particle at positions x0

and x1 as follows:

T0 = T1 + q U0, (2.1)

where Ti represents the kinetic energy of a particle at xi, and q is the particle’s charge.

Since T = T ‖ + T⊥, Equation 2.1 can be rewritten as

T
‖
1 + T⊥

1 = T0 − q U0. (2.2)

In order for the particle to pass through the filter, T
‖
1 must be greater than zero.

Combining this with Equation 2.2, we get the following condition for particles that

pass through the spectrometer:

T0 − T⊥
1 − q U0 > 0. (2.3)
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Due to the adiabatic invariance of |µ|, the following relation holds between a

particle’s transverse kinetic energy and the magnetic field strength at x0 and x1:

T⊥
0

|Bmax|
= |µ| = T⊥

1

|Bmin|
⇒ T⊥

1

T⊥
0

=
Bmin

Bmax

. (2.4)

From Equation 2.4 and the condition that 0 ≤ T⊥
0 ≤ T0, we obtain the following

limits on the distribution T⊥
1 :

0 ≤ T⊥
1 ≤

Bmin

Bmax
T0. (2.5)

Combining Equations 2.3 and 2.5, we can determine the energy interval ∆U over

which the transmission of particles through the spectrometer rises from 0 to 1 to be

q U0 ≤ T0 ≤ q U0

(

1 +
Bmin

Bmax

)

, (2.6)

corresponding to a resolving power of

T0

∆T
=

U0

∆U
=
Bmax

Bmin

. (2.7)

In order to derive an explicit form for the transmission function f(T0, U0) within

the region defined in 2.6 (derived from [31]), we must integrate over the pitch angle

of the particles for a given initial energy T0 that pass through the filter:

f(T0, U0) =

∫ π
2

0

n(θ) ·Θ(T
‖
1 ) · dθ, (2.8)

where n(θ) · dθ represents the differential solid angle, and Θ(T
‖
1 ) is the Heaviside step

function that returns 1 for all T
‖
1 > 0. The differential solid angle is easily solved to

be

n(θ) · dθ = sin θ · dθ (2.9)
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and, from Equations 2.2 and 2.4, we can modify T
‖
1 in 2.8 to be

T
‖
1 = T0 − q U0 −

(

Bmin

Bmax

)

T0 sin2 θ. (2.10)

Using these values in Equation 2.8, we get

f(T0, U0) =

∫ π
2

0

sin θ ·Θ
(

T0 − q U0 −
(

Bmin

Bmax

)

T0 sin2 θ

)

· dθ. (2.11)

We can substitute for the Heaviside function in Equation 2.11 a modified region of

integration as follows:

f(T0, U0) =

∫ θ′

0

sin θ · d θ, (2.12)

with

sin2 θ′ =
T0 − q U0

T0
· Bmax

Bmin
. (2.13)

Computing this integral is now a straightforward process:

f(T0, U0) =

∫ θ′

0

sin θ · d θ

= 1− cos θ′ = 1−
√

1− sin2 θ′

= 1−
√

1− T0 − q U0

T0

· Bmax

Bmin

(2.14)

With Equations 2.6 and 2.14 (normalized to unity), we obtain the following full

equation for the transmission function of a MAC-E filter:

f(T0, U0) =



























0 T0 ≤ q U0

1−
q

1−T0−q U0
T0

·Bmax
Bmin

1−
r

1− 1

1+
Bmin
Bmax

q U0 < T0 < q U0

(

1 + Bmin

Bmax

)

1 T0 ≥ q U0

(

1 + Bmin

Bmax

)

, (2.15)

displayed graphically in Figure 2-3. The result is an integrating mass spectrometer

with a high transmission (≈ 50%) and a scalable resolution dependent upon the

strengths of the magnetic fields [29].
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Figure 2-3: Graphical description of the transmission function of a MAC-E filter.

2.3.2 KATRIN MAC-E Filters

ground 

electrode

inner electrode
sheet metal cone                   wire electrode                   sheet metal cone

ground 

electrode

HV feed-throughs

Figure 2-4: Schematic of the inner wire electrodes in the pre-spectrometer. Similar
wire electrodes are present in the main spectrometer.

Immediately downstream from the transport system described in Section 2.2 are

two MAC-E filters placed in sequence. The filters employ a novel electrode design

system, where the retarding high voltage is connected to the hulls of the spectrometers

themselves. Immediately inside the hulls are wire electrodes held at slightly lower
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potential, designed to reject background particles and to fine-tune the electric fields

within the spectrometers (see Fig. 2-4) [28]. Wires are used to minimize the surface

area of the electrode, reducing the probability of background particles due to cosmic

ray scattering.

Pre-spectrometer

Figure 2-5: Schematic of the pre-spectrometer.

The first filter, known as the pre-spectrometer, acts as a pre-filter to the β stream

by rejecting electrons with energy < 18.3 keV (see Fig. 2-5). Since its primary

function during operation is to decrease the flux of incoming electrons, it has relatively

small dimensions (3.38 m long, 1.70 m diameter) and a modest energy resolution

∆U ≈ 100 eV. The magnets at the ends of the pre-spectrometer create a 4.5 T

magnetic field, with a minimum field of 0.02 T in the analyzing plane.

Main spectrometer

The main spectrometer is essentially a scaled-up version of the pre-spectrometer.

The electrodes comprising the hull of the spectrometer create a potential difference

between the entrance and the analyzing plane U0 ≈ −18.55 keV. The spectrometer

has a magnetic field strength Bmin ≈ 3 × 10−4 T at the analyzing plane (see Fig.

2-6). In addition to the magnets at the entrance and exit, axially symmetric air coils

around the circumference of the detector allow for finer control of the magnetic flux
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Figure 2-6: Schematic of the electromagnetic configuration of the main spectrometer.

tube and provide compensation for the earth’s magnetic field. The relative differences

of the magnetic field strengths at the entrance and the analyzing plane necessitate

the large dimensions of the spectrometer, which are about 10 m in diameter and 22.3

m in length. By allowing the magnetic field lines within the spectrometer to diverge

to such a large flux tube diameter, the main spectrometer is able to attain energy

resolutions ∆U ≈ 1 eV, a factor of 5 better than the leading MAC-E filters do date

[28].
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Table 2.2: (A) Wires placed inside the main spectrometer, in order to deflect incident
negatively charged particles. (B) A module holding wire electrodes. (C) Wire module
placement in the main spectrometer. Images taken from [32].

To decrease background particles due to cosmic rays and radioactive isotopes

within the electrodes, the interior of the main spectrometer is lined with ≈ 1300

modules of wire electrodes held at a slightly negative potential with respect to the
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spectrometer hull (see Table 2.2). The wires provide a screening factor S,

S =
Uwire − Uvessel

Uwire − Uinner
≈ 1 +

2π(l/s)

ln (s/(πd))
, (2.16)

where l represents the wire length, s is the distance between the wires, and d denotes

the diameter of each wire. A large S-value corresponds to more effective screening of

background particles. The wire modules an outer and inner layer of wire electrodes

with diameters of 3 and 2 mm, respectively.

2.4 Detector

Figure 2-7: Image of the segmented detector.

The tritium-decay β-electrons that pass through the main spectrometer then enter

the detector region. The detector region of the KATRIN experiment consists of

a multi-pixel silicon semiconductor detector, with energy resolution ∆E < 600eV ,

within a 5.6 T magnetic field. The size of the detector is closely linked to the ratio

of the magnetic field strengths at the the entrance to the detector region (Bmax) and

at the detector itself (Bdet). The maximum angle θdet,max that electrons incident on

the detector may have is determined by

θdet,max ≈ arcsin

(

Bdet

Bmax

)

. (2.17)
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The current configuration of the detector region is designed so that θdet,max ≈ 45◦,

corresponding to a detector with diameter ddet ≈ 9 cm to encompass the magnetic

flux tube. The detector is segmented into 148 divisions in order to provide spacial

resolution, allowing for localization of each incident particle’s track coordinates (see

Fig. 2-7).

Electrons incident on the detector are post-accelerated by up to 30 keV by a

conical electrode. This post-acceleration electrode helps to decrease background by

translating the signal above low-energy noise intrinsic to the detector and by reducing

backscattering off of the detector. Background signal is further suppressed by a veto

shield encompassing the detector region, able to reject events coincident with cosmic

ray background.

2.5 The role of simulation in electrode and magnet

design

Figure 2-8: Equipotential lines at the exit of the pre-spectrometer. Image taken from
[28].

It is evident from the previous sections that deviations from the electrostatic

and magnetostatic fields from the design values can contribute significantly to the

systematic design of the KATRIN experiment. Understanding the systematic errors
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and optimizing the fields associated with the electrodes and magnets is a nontrivial

endeavor. For example, one of the leading concerns within the collaboration with

respect to the electrode and magnet design is that an effect called a Penning Trap

may arise. Penning Traps are potential wells along the magnetic field lines. The

task of eliminating Penning traps is best suited to simulations of the electrostatic and

magnetostatic fields, since the fields can quickly become rather complex for even a

simple electrode and magnet configuration (see Fig. 2-8), and since it is difficult to

experimentally locate Penning traps.

Additionally, it is important to understand the systematic errors that occur due to

electrode and magnet misalignment. Since the placement of field-inducing elements

inherently must have tolerances, and since the electrostatic and magnetostatic fields

are extremely sensitive to the placement of these elements, tests must be conducted

in order to understand how the errors intrinsic to misalignment propagate through

the fields to errors in a measurement of the signal. Once again, the only practical

method of performing these tests is through simulation.
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Chapter 3

Direct Calculation of Electric and

Magnetic Fields

3.1 Introduction

Three techniques used to calculate electromagnetic fields are described in this thesis.

The first of these techniques is the direct calculation method; so named because it

makes the least number of approximations in its application of the fundamental laws

of electromagnetism. The method calculates the electric potential (and, subsequently,

the electric field) directly from charge distributions, and the magnetic vector potential

and magnetic field from current distributions. While basic in theory, the techniques

employed are mathematically nontrivial, and it is therefore necessary to describe them

with a fair amount of rigor.

The first section describes a method used in engineering practices known as the

Boundary Element Method (BEM). It is relevant to the material in this chapter

because, in application to electrostatics, it provides a means of determining the charge

distribution from a general configuration of electrodes held at various potentials. Since

in the KATRIN experiment only the electric potential of the electrodes are known,

application of the BEM is an essential step to performing direct calculations of electric

fields.1

1In fact, the charge distribution obtained by employing the BEM is critical to all of the electric
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The next section develops the mathematical tools necessary for the computation

of the electric potential due to electrodes of various shapes with constant charge

densities. Care is taken to provide an unambiguous description of the parameters of

each electrode primitive, so that the parameters used in the formula associated with

it match the input parameters used in the program KatrinField. The primitives

described are so chosen for their ability to reproduce a discretized description of the

electrodes used in the KATRIN experiment, while still being tractable for practical

computation.

The final section describes the requisite formulae for reproducing the magnetic

fields from the magnets used in the KATRIN experiment. Once again, parameters

are described to replicate the input parameters used in KatrinField.

3.2 Boundary Element Method

3.2.1 General description of the Boundary Element Method

The BEM is a computational technique for solving linear partial differential equa-

tions. Compared to other popular methods (such as the Finite Element and Finite

Difference Methods [33]) designed to accomplish the same goal, the BEM differs in

many respects, favoring its use in an important subset of problems. Instead of dis-

cretizing the entire region of interest, the main technique of the BEM is to discretize

only the surfaces of the geometries in the region. This effectively reduces the dimen-

sionality of the problem and facilitates the calculation of fields for regions that extend

out to infinity (rather than restricting computation to a finite region).[34] These two

features make the BEM faster and more versatile than competing methods when it

is applicable.

It should be noted that, while our interest in the BEM is limited to the field

of electrostatics, the method itself is a general technique whose application is rather

diverse. As a result, the following derivations (a composite of the techniques described

field-solving techniques described in this thesis.
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in [35], [34], [36], [37], [38] and [39]) will be performed in an abstract setting and, once

the necessary results are obtained, we will relate the method back to the determination

of charge distributions from potential distributions.

3.2.2 Definitions

n

�

�

�

r
r

dS(r)

dA(r)

�

�

�

n

R�

Figure 3-1: A graphical depiction of the regions Ω (in white) and Σ (in grey). ~n
describes the unit normal vector to the boundaries (ΓΩ and ΓΣ) of these regions, and
~r′ is the observation point.

We begin by defining a two-dimensional region Ω, bounded by a piecewise smooth

contour ΓΩ with clockwise orientation. Next, we bound the region Ω with a circularly

shaped two-dimensional encompassing region Σ, bounded externally by a circular,

counterclockwise oriented contour ΓΣ of radius RΣ and internally by the contour ΓΩ

(see Fig. 3-1). We will frequently refer to fixed points in space, known hereafter as

observation points, with the label ~r′. Furthermore, we define dS(~r), ~r ∈ (ΓΩ ∪ΓΣ), as

an infinitesimal line segment centered at ~r and tangent to the boundary on which it

is located. Finally, we define dA(~r), ~r ∈ Σ, as an infinitesimal area centered about ~r.

3.2.3 Derivation from Green’s second identity

We are looking for solutions to the Laplace equation for regions of Φ where no charge

is enclosed,

∇2Φ = 0, (3.1)
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in the region Σ. We begin by applying Green’s second identity to Σ, as follows:

∫

Σ

(

U∇2W +W∇2U
)

dA(~r) =

∫

ΓΣ+ΓΩ

(

U
∂W

∂n
−W ∂U

∂n

)

dS(~r), (3.2)

where U(~r) and W (~r) are twice continuously differentiable scalar functions in Σ and

on its boundaries. We now take U(~r) to be the solution to Equation 3.1. Applying

this to Equation 3.2 eliminates one of the terms on the left-hand side, leaving us with

∫

Σ

U∇2WdA(~r) =

∫

ΓΣ+ΓΩ

(

U
∂W

∂n
−W ∂U

∂n

)

dS(~r). (3.3)

Next, we choose a suitable W (~r) to eliminate the remaining domain integral on the

left-hand side of Equation 3.3, so that only calculations around the boundary of Ω

remain. This is done by letting W (~r) be the fundamental solution of the Laplace

equation, with the property that

∇2W (~r) = −δ(r), (3.4)

where r = |~r − ~r′|.
In two dimensions2, the fundamental solution to the Laplace equation is defined

as

W (~r) = − 1

2π
ln (r) . (3.5)

Immediately, it can be seen that this choice of W (~r) causes singularities to arise in

Equation 3.3 when ~r = ~r′ in Σ (where ln (r) is undefined) and when ~r′ ∈ (ΓΩ ∪ ΓΣ)

(where δ(r) is undefined). It is necessary to handle these singularities before any

further progress can be made.

3.2.4 Singularities

We begin by dealing with the singularity that occurs when ~r = ~r′, and ~r′ ∈ Σ. By

excluding from Σ a small circular region Σǫ with boundary Γǫ, characterized by a

2The three-dimensional fundamental solution to the laplace equation is W (~r) = 1

4πr .
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Figure 3-2: By including a small Γǫ, we are able to avoid the divergence of W (~r).
Taking the limit as ǫ→ 0, we recover our original domain.

radius ǫ centered at our observation point ~r′ (see Fig. 3-2), we modify Equation 3.3

to be
∫

Σ−Σǫ

U∇2WdA(~r) =

∫

ΓΣ+ΓΩ−Γǫ

(

U
∂W

∂n
−W ∂U

∂n

)

dS(~r). (3.6)

The left-hand side of this equation is zero (since ∇2W (~r) = 0 ∀~r ∈ (Σ−Σǫ)), and we

are left with additional terms on the right-hand side. Making the following changes

in variables:

|~r − ~r′| = ǫ,

∂

∂n
= − ∂

∂ǫ
,

dS(~r) = ǫ · dθ, (3.7)

we evaluate the first additional term on the right-hand side to be

−
∫

Γǫ

U(~r)
∂

∂n
W (~r) · dS(~r) =

1

2π

∫ 2π

0

U(~r)

(

−1

ǫ

)

ǫ · dθ =

= − 1

2π

∫ 2π

0

U(~r) · dθ, (3.8)
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which, as ǫ → 0, approaches −U(~r′). The second additional term on the right-hand

side of Equation 3.6 becomes

−
∫

Γǫ

∂

∂n
U(~r) ·W (~r) · dS(~r) =

1

2π

∫ 2π

0

∂U(~r)

∂n
ln (ǫ)ǫ · dθ =

=
ǫ ln (ǫ)

2π

∫ 2π

0

∂U(~r)

∂n
· dθ, (3.9)

which approaches 0 as ǫ→ 0. Therefore, when ~r = ~r′, ~r′ ∈ Σ, Equation 3.3 becomes

U(~r′) =

∫

ΓΣ+ΓΩ

(

U
∂W

∂n
−W ∂U

∂n

)

dS(~r). (3.10)
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Figure 3-3: By deforming ΓΩ to include a small circular segment of radius ǫ, we are
able to avoid the singularity of ∇2W (~r) at the boundary. Taking the limit as ǫ→ 0,
we recover our original boundary.

Next, we deal with the singularity that occurs on the boundaries of Ω. To avoid

the ambiguity of the delta function at ΓΩ, the boundary is deformed to incorporate

the arc of a circle with radius ǫ, and the limit is taken as ǫ approaches zero (see Fig.

3-3). By including the boundary Γǫ (formed by the circular arc of radius ǫ subtending

an angle θΩ) in Equation 3.10, we get

U(~r′) =

∫

ΓΣ+Γǫ+ΓΩ

(

U
∂W

∂n
−W ∂U

∂n

)

dS(~r). (3.11)

Evaluating the extra terms on the right-hand side of Equation 3.11 in a similar manner

as before (with a change in sign, since the boundary normal is reversed), we get for
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the first additional term

∫

Γǫ

U(~r)
∂W

∂n
dS(~r) = − 1

2π

∫ θΩ

0

U(~r)

(

1

ǫ

)

ǫ · dθ =

=
1

2π

∫ θΩ

0

U(~r) · dθ, (3.12)

which approaches θΩ

2π
· U(~r′) as ǫ→ 0. The second additional term becomes

∫

Γǫ

∂

∂n
U(~r) ·W (~r) · dS(~r) = − 1

2π

∫ θΩ

0

∂U(~r)

∂n
ln (ǫ)ǫ · dθ =

= −ǫ ln (ǫ)

2π

∫ θΩ

0

∂U(~r)

∂n
· dθ, (3.13)

which approaches zero as ǫ→ 0. It is now possible to rewrite Equation 3.10 to include

the boundaries ΓΣ and ΓΩ (since this approach works for deforming ΓΣ as well) as

c(~r′) · U(~r′) =

∫

ΓΩ+ΓΣ

(

U
∂W

∂n
−W ∂U

∂n

)

dS(~r), (3.14)

where

c(~r′) =



















1 ~r′ ∈ Σ

1− θΩ

2π
~r′ ∈ (ΓΩ ∪ ΓΣ)

0 ~r′ /∈ Σ

. (3.15)

3.2.5 Extending RΣ to ∞

By enforcing the condition that, for large |~r|, U(~r) ∼ O( 1
RΣ

), we can make the fol-

lowing substitutions to observe the behavior of Equation 3.14 as RΣ →∞:

|~r − ~r′| ∼ RΣ,

∂

∂n
=

∂

∂RΣ

,

dS(~r) = RΣ · dθ.
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The first term involving ΓΣ in Equation 3.14 now becomes

∫

ΓΣ

U(~r)
∂W (~r)

∂n
dS(~r) ∼ − 1

2π

∫ 2π

0

(

1

RΣ

)

∂ ln (RΣ)

∂RΣ
· RΣdθ = (3.16)

= − 1

2π

∫ 2π

0

(

1

RΣ

)

dθ = (3.17)

=
1

RΣ
, (3.18)

which approaches zero as RΣ →∞. The second term in Equation 3.14 becomes

∫

ΓΣ

∂U(~r)

∂n
W (~r)dS(~r) ∼ − 1

2π

∫ 2π

0

(

− 1

R2
Σ

)

ln (RΣ)RΣdθ = (3.19)

=
ln (RΣ)

RΣ
, (3.20)

which also approaches zero as RΣ →∞. We have now arrived at underlying equation

for the Boundary Element Method in its final form:

c(~r′) · U(~r′) =

∫

ΓΩ

(

U
∂W

∂n
−W ∂U

∂n

)

dS(~r), (3.21)

c(~r′) =



















1 ~r′ ∈ Σ

1− θΩ

2π
~r′ ∈ ΓΩ

0 ~r′ /∈ Σ

. (3.22)

3.2.6 Connection to indirect BEM

We now have a formula relating a function that satisfies the Laplace equation in our

region of interest to the properties of the function at the region’s boundaries. With

this, the standard application of the BEM is to discretize the boundary, thus convert-

ing Equation 3.21 into a soluble linear algebraic equation. There is another approach,

however, whose derivation stems from this point in the derivation of the direct BEM,

that proves to be better suited to our needs. The purpose of the indirect BEM (known

by many other names, including Source Element Method (SEM), Source Integration

Method (SIM), and Charge-Density (Integral) Method) is to apply Dirichlet bound-
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ary conditions3 in order to solve for a source distribution, and then to use the source

distribution to solve the function for all space.

n

�

�

dS(r) �

�

�

n

Figure 3-4: The equivalent figure to 3-1 for internal problems. The shaded region
denotes the domain of interest for computation.

The preceding derivation for the BEM is specifically tailored to exterior problems,

where the domain in which we wish to know the function that satisfies the laplace

equation lies outside of the boundary. By a very similar approach, one can derive the

underlying equation of the BEM for interior problems to be

c(~r′) · Ũ(~r′) =

∫

ΓΩ

(

Ũ
∂W

∂n
−W ∂Ũ

∂n

)

dS(~r), (3.23)

c(~r′) =



















1 ~r′ ∈ Ω

θΩ

2π
~r′ ∈ ΓΩ

0 ~r′ /∈ Ω

, (3.24)

which differs from Equation 3.21 by the definition of the boundary angle, the bound-

ary’s orientation and the direction of the boundary normal.

Since Equation 3.23 is defined with the orientation of ΓΩ and its normal reversed,

we modify the equation to be in the same terms as Equation 3.21 so that, for ~r′ ∈ Σ,

3Boundary conditions are known as Dirichlet when the values of a function are fixed at the
boundary.
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Equation 3.23 becomes

0 =

∫

ΓΩ

(

Ũ
∂W

∂n
+W

∂Ũ

∂n

)

dS(~r). (3.25)

By specifying that Ũ(~r) gives the same values on ΓΩ as U(~r) (so that Ũ(~r) = U(~r) ∀~r ∈
ΓΩ), we are able to add Equations 3.25 and 3.21 for ~r′ ∈ Σ to get

U(~r′) =

∫

ΓΩ

W

(

∂U

∂n
+
∂Ũ

∂n

)

dS(~r). (3.26)

We can then define σ =
(

∂U
∂n

+ ∂Ũ
∂n

)

, where σ is the sum of the fluxes across ΓΩ, [39]

and rewrite Equation 3.26 as

U(~r′) =

∫

ΓΩ

W · σ · dS(~r). (3.27)
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Figure 3-5: Discretization of ΓΩ into n sub-elements for numerical computation.
Charge densities are constant along a sub-element.

In order to compute Equation 3.27 numerically, we approximate ΓΩ by discretizing

it into n line segments, each with a constant value for σ (See Fig. 3-5). In doing so,

Equation 3.27 is approximated as

U(~r′) =

n
∑

j=1

σj ·
∫

Γj

W (~rj) · dS(~r), (3.28)
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where ~rj is the position of the j-th sub-element, Γj is the j-th discretized segment of

ΓΩ, and σj is the sum of the fluxes across Γj . If we choose our observation points to

be ~ri, i = {1, 2, . . . , n}, we can convert Equation 3.28 into a linear algebraic equation

in terms of our known functional values and our unknown fluxes at the boundary.

Thus, Equation 3.28 becomes

Ui = Wij · σj , (3.29)

where Ui = U(~ri), Wij =
∫

Γj
W (~rj) · dS(~r) with ~ri as the observation point, and there

is an implicit sum over j. Solving this equation for σj , we can obtain values for the

boundary fluxes and can then use Equation 3.28 to solve for U(~r′) in all space.

It should be noted that, while the above derivation was completed in the 2-

dimensional case, the 3-dimensional derivation is very similar (differing mainly in the

definition of the fundamental solution to the Laplace equation, W (~r), and the method

of discretization), and provides no new insight into the theory of the technique. The

resulting formulae for the 3-dimensional indirect BEM are identical to Equations 3.28

and 3.29, where W (~r) is redefined accordingly for 3-dimensional solutions.

3.2.7 Relation to electrostatics

Applying the results of the derivation of the indirect BEM to electrostatics, we begin

by noting that the potential in charge-free regions must satisfy the Laplace equation.

It is therefore apparent that our function U(~r′) represents the electric potential at a

point ~r′, and that the Dirichlet boundary conditions imply that the potential is known

on the surfaces of all of the electrodes. Observing the form of the fundamental solution

to the Laplace equation, it also becomes clear that W (~r) is merely the geometric

component of the definition of the electric potential due to a point charge.4 Finally,

σi can be seen as the charge density of the i-th sub-element multiplied by 1
ǫ0

by the

property of electrostatic boundary conditions that

∂Vabove

∂n
− ∂Vbelow

∂n
= − σ

ǫ0
, (3.30)

4This conclusion is more transparent in the 3-dimensional case, where the fundamental solution
to the Laplace equation is W (~r) = 1

4πr .
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where the difference becomes a sum due to the reversal of the unit normal in Equation

3.25.[40] Given these relations, Equation 3.28 can be interpreted as a reiteration of the

law of superposition, where the potential at a given point is the sum of the potential

contributions from each of the discretized sub-elements.

By discretizing our boundary, we have effectively made the assumption of a con-

stant charge density on a small, but not infinitesimal, region of our boundary. In

order to obtain a charge distribution for any nontrivial electrode configuration, this

approximation is unfortunately a necessity. Using decreasingly smaller sub-elements,

we approach the actual charge configuration present for a given electrode configura-

tion, at the expense of computational time (the scaling of accuracy to computation

time is discussed in Chapter 6).

3.3 Electrostatics

3.3.1 Introduction

The electric fields in the KATRIN experiment are produced using fixed electrodes

held at different potentials. This configuration lends itself nicely to analysis via

the BEM with Dirichlet boundary conditions. The method of employing the BEM

to KATRIN’s electrode geometry has been developed by Glück [41][42][43], using

discretization methods for both a full 3-dimensional asymmetric geometry and an

approximately axially symmetric configuration. The purpose of this section is to

introduce the geometry primitives used for discretization and to describe how they

are used with the indirect BEM.

3.3.2 Geometry Primitives

Implementation of the BEM requires the discretization of electrode surfaces into sub-

elements, or primitives, that have a fixed charge density. While a fully 3-dimensional

discretization of the electrode surfaces provides for higher accuracy and a more real-

istic depiction of the geometry, the electrode configuration in KATRIN is well suited
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to an axially symmetric approximation. Exploiting this axial symmetry drastically

reduces computation time and memory usage, but is only accurate to the degree

that the approximation of axial symmetry holds valid (a comparison of the axially

symmetric and asymmetric field computation routines can be found in Chapter 6).

Therefore, it is necessary to use both axially symmetric and asymmetric discretiza-

tion methods to maximize computation efficiency, while still maintaining acceptable

accuracy in computation of the electric field.

Wire segments, rectangles and right triangles are employed for the asymmetric

description of KATRIN’s electrode geometry, and rings and conic sections are used

for the axially symmetric approximations to this geometry. The original derivation

for the electric potential from these electrode primitives (with the exception of the

triangle primitive) was originally performed by Glück [42] [43]. In order to implement

these shapes for computational analysis via the BEM, a uniform method of description

must be provided, as well as a means for determining the electric potential from each

primitive held at a constant charge density. We shall examine the five primitives

sequentially.

Wire segments

P

�

x1 2x

z
1r

2r

0x

L

Figure 3-6: A charged line segment with endpoints ~x1 and ~x2 and charge density λ,
and a field point ~P with minimal distance z from the infinite line on which the line
segment is located (the point of intersection is labeled ~x0). Distances between the
field point and x1 and x2 are r1 and r2, respectively.

50



We define a wire segment sub-element by its endpoints ~x1 and ~x2, as well as its

diameter d. For the sake of brevity, the following derivation of electric potential from

a wire segment is performed under the assumption that d is small compared to the

distance between the field point and the wire segment5. It is assumed that the wire

segment has a constant charge density λ.

We begin by defining the scalars x1 = |~x1 − ~x0| and x2 = |~x2 − ~x0|. We then

introduce an infinitesimal dx along the wire segment, an infinitesimal charge dQ =

λ · dx, and an infinitesimal potential

dV =
1

4πǫ0
· dQ
r

=
1

4πǫ0
· λ · dx√

x2 + z2
, (3.31)

where x1 < x < x2, and z is defined in Figure 3-6. Integrating from x1 to x2 gives

V =
λ

4πǫ0

∫ x2

x1

dx√
x2 + z2

=
λ

4πǫ0
ln

(

x2 + r2
x1 + r1

)

, (3.32)

where r1 = |~x1 − ~P | and r2 = |~x2 − ~P |.
While Equation 3.32 is a perfectly viable solution for the electric potential from

a charged wire segment, it is possible to simplify the method to facilitate speed of

computation by recasting the equation in terms of L = |~x1−~x2| = x2−x1, the length

of the wire segment [44]. With this substitution, Equation 3.32 can be expressed as

V =
λ

4πǫ0
ln

(

r1 + r2 + L

r1 + r2 − L

)

, (3.33)

which, while algebraically equivalent to Equation 3.32, is only in terms of the param-

eters r1, r2 and L, which are more readily calculable.

Rectangular sub-elements

We define a rectangular sub-element by the position of one of its corners ~P0, the

lengths of its sides a and b, and the unit vectors defining the sides of the rectangle ~n1

5In practice, the diameter of the wire segment must be taken into account when computations
are performed close to the wire segment.

51



b

aP�

n�

n� v Q
u P

wp
r
vp

up

Figure 3-7: A rectangular sub-element defined by the position of a corner ~P0, the
lengths of the sides a and b, and the unit vectors in the directions of sides a and b,
labeled ~n1 and ~n2. The field point is defined as ~P , with local coordinates (up, vp, wp).

An arbitrary point ~Q located on the surface of the sub-element is shown, with local
coordinates (u, v, 0). The distance between ~P and ~Q is r.
and ~n2 (see Fig. 3-7). Using the local coordinate system defined in Figure 3-7, the

electric potential from the rectangle with constant surface charge density σ is

V (~P ) =
σ

4πǫ0

∫ −up+a

−up

∫ −vp+b

−vp

1r · dy · dx, (3.34)

where r =
√

(u− up)2 + (v − vp)2 + w2
p =

√

x2 + y2 + w2
p. Using the indefinite inte-

gral

I1(x, y, z) =

∫

1r · dy = ln (y + r), (3.35)

Equation 3.34 becomes

V (~P ) =
σ

4πǫ0

∫ −up+a

−up

(ln ((−vp + b) + r)− ln (−vp + r)) · dx. (3.36)

Finally, applying the solution to the indefinite integral

I2(x, y, z) =

∫

ln (y + r) · dx = z arctan
(x

z

)

− z arctan
(xy

zr )− x+

+y ln (x+ r) + x ln (y + r), (3.37)
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we arrive at an analytic solution to Equation 3.36:

V (~P ) =
(

σ
4πǫ0

)

(I2((−up + a), (−vp + b), wp)− I2(−up, (−vp + b), wp)−

−I2((−up + a),−vp, wp) + I2(−up,−vp, wp)) , (3.38)

which is the final form of the electric potential from a charged rectangular sub-element.

Right triangular sub-elements
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Figure 3-8: A right triangular sub-element defined by the position of the corner
opposite the hypotenuse ~P0, the lengths of the sides a and b, and the unit vectors
in the directions of sides a and b, labeled ~n1 and ~n2. The field point is defined as
~P , with local coordinates (0, 0, z). The corners of the triangle are recast into local
coordinates to facilitate integration.

Right triangular sub-elements are described in a similar manner to rectangular

sub-elements. They are defined by the position of the vertex opposite the hypotenuse

~P0, the lengths of its sides a and b, and the unit vectors defining its sides ~n1 and ~n2

(see Fig. 3-8).

The analytic calculation of the potential from a right triangle is quite complex.

The integral equation in terms of the local coordinates described in Figure 3-8 for the

potential of a right triangle with surface charge density σ is

V =
σ

4πǫ0

∫ y2

y1

∫ a+by

x1

1
√

x2 + y2 + z2
· dx · dy, (3.39)
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where a = x2y2−x1y1

y2−y1
and b = x1−x2

y2−y1
. The inner integral can be evaluated using a

common table of integrals, and after dividing by z to make the integral dimensionless,

Equation 3.39 becomes

V =
σ

4πǫ0
· z ·

[
∫ u2

u1

du · sinh−1

(

a′ + bu√
u2 + 1

)

−
∫ u2

u1

du · sinh−1

(

x′1√
u2 + 1

)]

, (3.40)

where a′ = a
z
, u = y

z
, ui = yi

z
, and x′1 = x1

z
. If we define the following indefinite

integrals

I3(a, b, u) =

∫

sinh−1

(

a+ bu√
u2 + 1

)

· du (3.41)

and

I4(x, u) =

∫

sinh−1

(

x√
u2 + 1

)

· du, (3.42)

Equation 3.40 can be rewritten as

V =
σ

4πǫ0
· z · [I3(a′, b, u2)− I3(a′, b, u1)− I4(x1, u2) + I4(x1, u1)] . (3.43)

The analytic solutions for I3 and I4 are unfortunately rather unwieldy, and have

therefore been reproduced in Appendix A. It should be noted that, while triangular

sub-elements seem a much more versatile tool than rectangular sub-elements to use in

replicating complicated geometries, the computational time for using triangular sub-

elements is far greater than for their rectangular counterparts, and they are therefore

used sparingly.

Ring sub-elements

A ring sub-element is defined in an axially symmetric coordinate system by a gener-

ating point ((R,Z) in Fig. 3-9), whose rotation about the z-axis defines the points on

the ring. By symmetry, we can always define our field point to lie in the θ = 0 plane,

thus making the location of our field point ~P = (r, 0, z) in cylindrical coordinates.

The distance from the field point to a point ~P ′ on the ring (with coordinates (R, θ, Z))
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Figure 3-9: A ring sub-element in an axially symmetric system, defined by the gen-
erating point (R,Z) and charge Q. The field point is located at ~P .

is defined as

|~P − ~P ′| =
√

(r −R cos θ)2 + (R sin θ)2 + (z − Z)2 =

=
√

R2 + r2 + (z − Z)2 − 2Rr cos θ. (3.44)

We refer to a linear charge density on the ring λ = Q
2π

. With this, the formula for the

potential at ~P due to the ring generated by point ~P ′ is

V =
1

4πǫ0

∫ 2π

0

λR · dθ
√

R2 + r2 + (z − Z)2 − 2Rr cos θ
. (3.45)

By noting that, for each point on the ring at θ, 0 < θ < π, there exists a corresponding

point at 2π − θ that contributes an equivalent amount to the electric potential, we

can reduce the upper bound of the integral in Equation 3.45 by a factor of two, and

double the value of the evaluated integral. Employing this trick and replacing λ with

Q
2π

, Equation 3.45 becomes

V =
Q

4π2ǫ0

∫ π

0

dθ
√

R2 + r2 + (z − Z)2 − 2Rr cos θ
. (3.46)
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Next, we can substitute α = π−θ
2

for θ, so that Equation 3.46 becomes

V =
Q

4π2ǫ0

∫ 0

π
2

−2 · dα
√

R2 + r2 + (z − Z)2 − 2Rr cos (π − 2α)
=

=
Q

2π2ǫ0

∫ π
2

0

dα
√

R2 + r2 + (z − Z)2 + 2Rr cos (2α)
. (3.47)

By applying the double angle formula (cos (2x) = 1− 2 sin2 (x)) to Equation 3.47, we

get

V =
Q

2π2ǫ0

∫ π
2

0

dα
√

R2 + r2 + (z − Z)2 + 2Rr(1− 2 sin2 α)
=

=
Q

2π2ǫ0

∫ π
2

0

dα
√

R2 + r2 + (z − Z)2 + 2Rr − 4Rr sin2 α
. (3.48)

We now introduce the parameters S =
√

(R + r)2 + (z − Z)2 and and k = 2
√

Rr
S

, and

recast Equation 3.48 in terms of these parameters:

V =
Q

2π2ǫ0
· 1

S
·
∫ π

2

0

dα
√

1− k2 sin2 α
. (3.49)

The integral in Equation 3.49 is exactly the complete elliptic integral of the first kind

K(k), for which there are many well-known methods of calculation. The final form

for the potential from a charged ring is therefore

V =
Q

2π2ǫ0
· K(k)

S
. (3.50)

Conic section sub-elements

A conic section sub-element is defined in an axially symmetric coordinate system by

a generating line segment (connecting the points (Ra, Za) and (Rb,Zb
) as in Fig. 3-9,

for example) and rotating it about the axis of symmetry. Using the results from

the derivation of the potential from a charged ring, we can determine a formula for

the potential due to a charged conic section by parameterizing Equation 3.50 and

integrating over the length of the generating line. From Figure 3-10, it is clear that
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Figure 3-10: A conic section sub-element defined by the generating line connecting
the points (Ra, Za) and (Rb, Zb), and surface charge density σ. The field point is

defined as ~P .

the length of the generating line is given by

L =
√

(Za − Zb)2 + (Ra −Rb)2. (3.51)

Our potential is therefore given by

V =
σ

πǫ0
·
∫ L

0

R(x) ·K(k(x))

S(x)
· dx, (3.52)

where

R(x) = Ra + x · Rb − Ra

L
(3.53)

and

Z(x) = Za + x · Zb − Za

L
(3.54)

define the (R,Z) coordinates of a ring generated by point ~P ′, and

S(x) =
√

(R(x) + r)2 + (z − Z(x))2 (3.55)

and

k(x) =
2
√

R(x) · r
S(x)

(3.56)

are the parameters introduced in Equation 3.49.
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3.3.3 Implementation of the indirect BEM with electrode prim-

itives

Now that we have defined our electrode primitives, we can use the indirect BEM to

compute the resultant charge distributions across a configuration of primitives held

at different potentials. For an arbitrary geometric configuration we consider a group

of N sub-elements, each being a type of the aforementioned primitives. We define a

geometric midpoint for each of the sub-elements, so that for each sub-element i there

is an associated point ~ri that describes its location. Since we now have the equations

necessary for computing the potential due to each sub-element for all points in space,

we can construct the
←→
W matrix defined in Equation 3.29, where 1

ǫ0
·Wij represents the

electric potential contribution of sub-element i with unit charge density at the field

point ~rj . The vector ~U is simply a vector of the potentials at which each sub-element

is being held (i.e. Ui is the user-defined potential of the i-th sub-element).

There exist many techniques for solving the equation

~U =
←→
W · ~σ (3.57)

for ~σ, but perhaps the most well-known approach is the method of Gaussian elimina-

tion [42] [43]. Regardless of how the equation is solved, the resultant σi components

represent the charge distribution of sub-element i necessary to satisfy the given po-

tential boundary conditions. With these charge distributions, the electric potential

(and by differentiation, the electric field) due to the entire electrode configuration can

be computed in all regions of space.

3.4 Magnetostatics

3.4.1 Introduction

While the BEM has been developed to facilitate the computation of magnetic fields,

the configuration of the magnets in KATRIN make this approach unnecessary. Be-
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cause the current applied to each of the magnets is independent of the other magnets

in the experiment, its magnitude can be treated as an independent parameter, unlike

the charge distribution for the electric components. It is therefore possible to directly

calculate the magnetic field as a superposition of all of the magnets in the system,

each with a user-defined current.

3.4.2 Geometry Primitives

The type of magnet that is of interest for use the KATRIN simulation is a super-

conducting magnet composed of axisymmetric coils with a rectangular cross-section,

hereafter referred to as a thick coil (see Fig. 3-13). The formulae used to describe the

scalar potential and magnetic fields for a thick coil are stated by Garrett [45] and de-

scribed in greater detail by Glück [46] [47]. Due to the complexity of the calculations

necessary to compute the field from such a magnet, only a semi-analytic computa-

tion of the field is used. In order to arrive at the formula for this computation, it is

necessary to first understand the analytic solutions for computing the magnetic field

from a circular current loop, and then from an infinitely thin solenoid. The magnetic

field due to a thick coil is derived from these formulae.

Magnetic vector potential due to a circular current loop

We begin by defining a circular loop of current, generated by rotating point (R,Z)

about the azimuthal axis, with current ~I. We then define our field point (r, 0, z) in a

similar manner to the derivation of the potential due to a charged loop. A formula

for the magnetic field is obtained by first deriving the magnetic vector potential ~A,

and then by taking its curl ( ~B = ∇× ~A).

Using the coordinate frame described in Figure 3-11, we set up our equation for

the magnetic vector potential as

~A =
µ0I

4π

∫ 2π

0

R · dθ
√

R2 + r2 + (z − Z)2 − 2Rr cos θ
· θ̂, (3.58)

where the denominator in the integral of Equation 3.58 is simply the distance from
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Figure 3-11: A circular current loop with current ~I, generating point (R,Z), and an
off-axis field point (r, z).

the field point to a point on the ring, taken from Equation 3.44, and ~A is in the same

direction as ~I (in other words,
~A

| ~A| =
~I

|~I|). By converting θ̂ into Cartesian coordinates,

Equation 3.58 becomes

~A =
µ0I

4π

[

∫ 2π

0

−R sin (θ) · dθ
√

R2 + r2 + (z − Z)2 − 2Rr cos θ
· x̂+

+

∫ 2π

0

R cos (θ) · dθ
√

R2 + r2 + (z − Z)2 − 2Rr cos θ
· ŷ
]

. (3.59)

By symmetry, we can see that the first integral in Equation 3.59 must equal zero (since,

for 0 < θ < π, there exists a contribution equal in magnitude and opposite in sign

from θ′ = 2π−θ). Furthermore, symmetry dictates that the contribution of the second

integral from 0→ π is identical in magnitude to the the contribution from π → 2π, so

we are able to halve the upper limit of integration and count its contribution twice (as

was done for the calculation of the electric potential from a charged ring). Applying

these symmetry arguments and converting back into cylindrical coordinates, Equation

3.59 becomes

~A =
µ0I

2π

∫ π

0

R · cos (θ) · dθ
√

R2 + r2 + (z − Z)2 − 2Rr cos θ
· θ̂. (3.60)
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As was done in Equation 3.47 for the charged ring, we substitute α = π−θ
2

for θ, so

that Equation 3.60 becomes

~A =
µ0I

2π
· R ·

∫ π
2

0

−2 · cos (2α) · dα
√

R2 + r2 + (z − Z)2 + 2Rr cos 2α
· θ̂. (3.61)

By applying the double angle formula (cos (2x) = 1−2 sin2 (x)) to Equation 3.61, our

formula becomes

~A =
µ0I

2π
· R ·

∫ π
2

0

−2 · (1− 2 sin2 (α)) · dα
√

R2 + r2 + (z − Z)2 + 2Rr(1− 2 sin2 (α))
· θ̂. (3.62)

By substituting S =
√

(R + r)2 + (z − Z)2 and k = 2
√

R·r
S

into Equation 3.62, we get

~A =
µ0I

π
· R
S
·
[

∫ π
2

0

−dα
√

1− k2 sin2 (α)
+

∫ π
2

0

2 sin2 (α) · dα
√

1− k2 sin2 (α)

]

· θ̂. (3.63)

The first integral in Equation 3.63 is clearly in the form of the complete elliptic

integral of the first kind (K(k)). For the second integral, we note that its integrand

can be rewritten as

sin2 (α)
√

1− k2 sin2 (α)
=

1

k2

(

1
√

1− k2 sin2 (α)
−
√

1− k2 sin2 (α)

)

(3.64)

and that the complete elliptic integral of the second kind is defined as

E(k) =

∫ π
2

0

√

1− k2 sin2 (α) · dα. (3.65)

Using these relations, we redefine Equation 3.63 as

~A =
µ0I

π
· R
S
·
[

2(K(k)− E(k))

k2
−K(k)

]

· θ̂, (3.66)

which is the final form of the magnetic vector potential for a circular current loop.
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Since ~A only contains an azimuthal component, we can rewrite Equation 3.66 as

~A = AL
θ · θ̂, (3.67)

where the subscript θ implies that AL
θ represents the θ-component of the vector po-

tential, and the superscript L denotes that the calculation was made for a current

loop. Using this formalism, the magnetic field can be written as

~BL = (BL
r , B

L
θ , B

L
z ) =

(

−∂A
L
θ

∂z
, 0,

1

r
· ∂(r · A

L
θ )

∂r

)

. (3.68)

In order to solve for BL
r and BL

z , it is necessary to know the derivatives of the complete

elliptic integrals of the first and second kind. They are given by Durand [48] as

dK(k)

dk
=

E(k)

k(1− k2)
− K(k)

k
(3.69)

and
dE(k)

dk
=
E(k)−K(k)

k
. (3.70)

Using Equations 3.69 and 3.70, it is possible to explicitly solve for Br and Bz in

Equation 3.68 to be

BL
r =

µ0I

4π
· (z − Z)R

S

[

2

k2S2
(E(k)−K(k)) +

1

D2
E(k)

]

(3.71)

and

BL
z =

µ0I

2πS

[

K(k)− E(k) + 2
R(R− r)

D2
E(k)

]

, (3.72)

where D =
√

(R− r)2 + (z − Z)2.

Magnetic vector potential due to an infinitely thin solenoid

The magnetic scalar potential from a solenoid with dimensions described in Figure

3-12 can be analytically determined by integrating Equation 3.66 from Za to Zb. The

technique for performing this integral involves exploiting the recursive nature of the
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Figure 3-12: A solenoid with a circular cross-section of radius R, with endpoints at
Za and Zb, axial surface current ~K, and an off-axis field point (r, z).

derivatives of all three complete elliptic integrals. The first two elliptic integrals and

their derivatives are defined in Equations 3.49, 3.65, 3.69 and 3.70, and the definition

of the third complete elliptic integral and its partial derivative are

Π(m, k) =

∫ π
2

0

dα

(1−m sin2 α)
√

1− k2 sin2 α
(3.73)

and
(

1− m2

k2

)

∂Π(m, k)

∂k
=

1

k

(

E(k)

1− k2
− Π(m, k)

)

. (3.74)

By manipulating these formulae, it can be shown that the equation for the magnetic

vector potential from a solenoid is

~AS = | ~K| ·
(

Ãθ(Zb)− Ãθ(Za)
)

· θ̂ = AS
θ · θ̂, (3.75)

where

Ãθ(Z) =

∫

AL
θ

I
· dZ = (3.76)

=
µ0

π
· R(z − Z)

S
·
{

1

k2
(E(k)−K(k)) +

(

1

c2 − 1

)

(Π(c, k)−K(k))

}

,
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and c = 2
√

R·r
R+r

.

Once again, we can determine the magnetic field by computing the curl of the

vector potential:

~BS = (BS
r , B

S
θ , B

S
z ) =

(

−∂A
S
θ

∂z
, 0,

1

r
· ∂(r · A

S
θ )

∂r

)

. (3.77)

It is beneficial to introduce the terms B̃r(Z) = −∂Ãθ

∂z
and B̃z(Z) = 1

r
· ∂(r·Ãθ)

∂r
, so that

BS
r = | ~K| ·

(

B̃r(Zb)− B̃r(Za)
)

(3.78)

and

BS
z = | ~K| ·

(

B̃z(Zb)− B̃z(Za)
)

. (3.79)

By once again exploiting the recursive properties of the complete elliptic integrals, it

is possible to compute B̃r(Z) and B̃z(Z) to be

B̃r(Z) = −µ0

π
· R
S

{

2

k2
(E(k)−K(k)) +K(k)

}

(3.80)

and

B̃z(Z) = −µ0

π
· R(z − Z)

S(R + r)

{

K(k) +
R− r
2R

(Π(c, k)−K(k))

}

. (3.81)

Magnetic vector potential due to a thick coil

Having described the magnetic fields for the cases of a circular current loop and an

infinitely thin solenoid, we now have the requisite tools for describing the properties of

a magnetic field from a thick coil symmetric about the z-axis.6 A thick coil is defined

by the z-coordinate of the middle of the coil Zmid, the magnitude of its inner radius

Ra, the thickness of the coil in the radial direction Rth, its length in the z-dimension

L, and the magnitude of its current density J . Converting from these parameters

to the ones used to compute the field (described in Fig. 3-13) is a trivial operation,

6For tilted coils, or thick coils whose axis of symmetry is not the z-axis, the field can be solved
using the general methods for thick coils in a local coordinate frame, and then converted back to
the global frame.
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Figure 3-13: A thick coil with volume current density ~J , generated by rotating a
rectangle with corners (Ra, Za) and (Rb, Zb) about the z-axis, and an off-axis field
point (r, z).

described in Table 3.1.

Parameters used in Equivalent Parameters
Field Computation in Thick Coil Description

Ra Ra

Rb Ra +Rth

Za Zmid − L
2

Zb Zmid + L
2

| ~J| J

Table 3.1: Conversion from the input parameters of a thick coil to the parameters
used in the calculation of its field.

To compute the magnetic vector potential from a thick coil, we perform an inte-

gration over Equation 3.75, as follows:

~ATC =

(
∫ Rb

Ra

AS
θ · dR

)

· θ̂ = | ~J | ·
(
∫ Rb

Ra

(

Ãθ(Zb)− Ãθ(Za)
)

· dR
)

· θ̂. (3.82)

Equation 3.82 can be solved by numerical integration techniques. Similarly, the r

and z-components of the magnetic field can be determined by performing a numerical
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integration over Equations 3.78 and 3.79:

BTC
r =

∫ Rb

Ra

BS
r · dR = | ~J | ·

∫ Rb

Ra

(

B̃r(ZB)− B̃r(ZA)
)

· dR, (3.83)

and

BTC
z =

∫ Rb

Ra

BS
z · dR = | ~J | ·

∫ Rb

Ra

(

B̃z(ZB)− B̃z(ZA)
)

· dR. (3.84)

3.5 Summary

The techniques described in this chapter provide a means for the direct computation

of electrostatic and magnetostatic fields in all regions of the KATRIN experiment

(provided that a combination of the defined sub-elements can accurately describe

the actual geometry of the experiment). As a standalone set of routines, the direct

calculation method is a theoretically sufficient toolkit for field generation. However,

it will be shown in Chapter 6 that this method is somewhat limited in practical

application, due to the time required to perform the required calculations for each

sub-element. Even with the inclusion of streamlined computational techniques (such

as those present in mathematics libraries, for example) and the utilization of more

powerful computers, the direct calculation method suffers from the fact that its com-

putation time scales with the accuracy of the discretization of the geometry. As a

result, the method is best suited as a fail-safe; in regions where faster methods fail,

the direct calculation method will always hold valid.

66



Chapter 4

Calculation of Electric and Magnetic

Fields via Zonal Harmonic Expansion

4.1 Introduction

The next technique used to calculate electrostatic and magnetostatic fields is the

method of zonal harmonic expansion. Though the principle concepts surrounding the

method are well established in the field of electricity and magnetism, the application

of the technique to computational analysis has been developed in great detail by

Garrett [49] for magnetostatic systems, and by Glück for both magnetostatic [46][50]

and electrostatic [46][51] systems. The general idea of the method is to expand

the equation for the field of an axially symmetric system into a convergent sum of

terms involving previously computed source constants and Legendre polynomials,

where each term individually satisfies the Laplace equation. While the restrictions

of axial symmetry and confinement to regions of convergence limit its applicability,

this method facilitates the rapid computation of electric and magnetic fields because

the terms in the series are largely recursive, and because the series expansions tend

to converge rapidly in practice (see Chapter 6 for comparisons of computation speed

to other methods.) These benefits make the method very useful for applied use in

simulations that require the repeated calculation of fields.

The first half of this chapter is devoted to the description, derivation and imple-
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mentation of the method of zonal harmonics in electrostatics. The axially symmetric

electrode geometry primitives introduced in Section 3.3 are used in the method’s ap-

plication. The latter half of the chapter describes the utilization of the method in

magnetostatics, with specific application to the magnetic geometry primitives defined

in Section 3.4.

4.2 Legendre polynomials in electrostatics

The Legendre polynomials arise naturally in electrostatics for the computation of

electric potential, as they are a complete set of orthonormal functions which satisfy

the Laplace equation (∇2Φ = 0) in spherical coordinates. In particular, the use

of Legendre polynomials to describe electric fields generated by charge distributions

having azimuthal symmetry is well covered in most electromagnetism texts [30] [40].

The canonical general solution to these problems is of the form

Φ(r, θ) =
∞
∑

n=0

[

Anr
n +Bnr

−(n+1)
]

Pn(cos θ), (4.1)

where Pn(x) represents the Legendre polynomial of order n. The addends of the

summation in equation 4.1 are also referred to as zonal harmonics [51] [49].

4.2.1 Regions of convergence

The Laplace equation is only valid in regions with no electric charge (it is a special

case of the Poisson equation, ∇2Φ = − ρ
ǫ0

, where the charge density ρ = 0). As a

result, solutions to the Laplace equation have restricted domains where they are valid

(with the trivial exception where ρ = 0 for all space).

As can be seen in Eq. 4.1, there are two sets of coefficients in the general solution

for electric potential (An and Bn), and often only one set contains nonzero values.

Conceptually, it is most convenient to imagine the electrode configuration in a local

spherical coordinate system with its origin at a source point S, and discretize the

system into concentric spherical shells about the source point that contain no charge
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Figure 4-1: (A) A 3-dimensional rendering of an axially symmetric charged cylindrical
electrode and (B) the regions of convergence for central and remote zonal harmonic
expansion from a source point S.

(see Fig. 4-1). If there is no charge at the origin, the system will contain a finite

spherical region with a boundary at the closest charge (defined by ρcen, the shortest

distance from the origin to a charge). This region necessarily has Bn = 0∀n, since the

potential at the origin must be finite. Assuming there is no charge radially outward

to infinity, the system will also contain an infinitely large spherical shell with an inner

boundary at the farthest charge (defined by ρrem, the longest distance from the origin

to a charge). Likewise, this region has An = 0 ∀ n, since the potential must approach

zero for large radial values.1

The two regions of space described above each have a unique set of coefficients and

different formulae for electric potential and electric field computation. It is therefore

natural to split the discussion of the zonal harmonic expansion technique between

these two regions, hereafter referred to as central (ρ < ρcen) and remote (ρ > ρrem)

expansions.

1Regions can be constructed for certain geometries that would require both sets of coefficients to
be nonzero (with charges restricting the inner and outer boundaries), but they are uncommon given
KATRIN’s geometrical configuration and in these regions another field method is used.
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4.2.2 Derivation of electric field components from electric po-

tential

Formalism

Before continuing, it is convenient to adopt the formalism of Glück [51]: the formalism

uses cylindrical coordinates (rcyl, zcyl), and redefines parameters to facilitate ease of

implementation in programming. We redefine equation 4.1 as such:

Φ(rcyl, zcyl) = Φcen(rcyl, zcyl) + Φrem(rcyl, zcyl), (4.2)

where

Φcen(rcyl, zcyl) =
∞
∑

n=0

Φcen
n |z0

(

ρ

ρcen

)n

Pn(cos θ) (4.3)

and

Φrem(rcyl, zcyl) =
∞
∑

n=0

Φrem
n |z0

(

ρ

ρrem

)−(n+1)

Pn(cos θ), (4.4)

and ρ =
√

r2
cyl + (zcyl − z0)2, θ = arctan

rcyl

(zcyl−z0)
= arccos ρ

(zcyl−z0)
, and the coefficients

Φcen
n , Φrem

n are evaluated with z0 as the origin of the local spherical coordinate system.

The following substitutions have been made:

r → ρ =
√

r2
cyl + (zcyl − z0)2,

θ → arctan
rcyl

(zcyl − z0)
,

An → Φcen
n |z0(ρcen)−n,

Bn → Φrem
n |z0(ρrem)(n+1),

but have left intact the form of equation 4.1.

It is important to note that the n-th term of Equations 4.3 and 4.4 contain the

respective terms
(

ρ
ρcen

)n

and
(

ρ
ρrem

)−(n+1)

, which decrease rapidly for large n. It is

possible to deduce from these scaling parameters that field points that have smaller

values for
(

ρ
ρcen

)

or
(

ρrem

ρ

)

(and are therefore farther away from the nearest or farthest

geometry primitive, respectively) will require fewer terms to converge upon the field
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value (given a constant error tolerance). The general property that the speed of

convergence is proportional to the distance from the geometry primitives is common

to all of the zonal harmonic expansion formulae described in this chapter.

Central expansion

In the central region, Φrem = 0, and we are left with Φ = Φcen. To derive analytic so-

lutions for the electric field in the central region, we must use the following properties

of zonal harmonics [49]:

∂

∂zcyl
(ρnPn(cos θ)) = nρn−1Pn−1(cos θ) (4.5)

and
∂

∂rcyl

(ρnPn(cos θ)) = − sin θρn−1P ′
n−1(cos θ). (4.6)

Applying 4.5 to 4.3, the electric field in the zcyl-direction is

Ezcyl
= − ∂

∂zcyl
(Φcen(rcyl, zcyl)) =

= −
∞
∑

n=1

Φcen
n |z0

(

n

ρcen

)(

ρ

ρcen

)n−1

Pn−1(cos θ). (4.7)

Similarly, applying 4.6 to 4.3 gives the electric field in the rcyl-direction:

Ercyl
= − ∂

∂rcyl

(Φcen(rcyl, zcyl)) =

=

∞
∑

n=1

Φcen
n |z0

(

sin θ

ρcen

)(

ρ

ρcen

)n−1

P ′
n−1(cos θ). (4.8)

Remote expansion

In the remote region, Φcen = 0, leaving us with Φ = Φrem. For the derivation of Φrem,

the following zonal harmonics relations are needed [52]:

∂

∂zcyl

(ρ−(n+1)Pn(cos θ)) = −(n + 1)ρ−(n+2)Pn+1(cos θ) (4.9)
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and
∂

∂rcyl

(ρ−(n+1)Pn(cos θ)) = − sin θρ−(n+2)P ′
n+1(cos θ). (4.10)

Applying equations 4.9 and 4.10 to 4.4, we derive the electric field in the remote

region to be

Ezcyl
= − ∂

∂zcyl

(Φrem(rcyl, zcyl)) =

=

∞
∑

n=1

Φrem
(n−1)|z0

n

ρrem

(

ρ

ρrem

)−(n+1)

Pn(cos θ) (4.11)

and

Ercyl
= − ∂

∂rcyl
(Φrem(rcyl, zcyl)) =

=

∞
∑

n=1

Φrem
n−1|z0

sin θ

ρrem

(

ρ

ρrem

)−(n+1)

P ′
n(cos θ). (4.12)

4.2.3 Calculating Source Constants

This section describes the computation of the coefficients to the zonal harmonic expan-

sion, Φcen
n |z0 and Φrem

n |z0, hereafter referred to as source constants. The techniques

described in this chapter were derived by Glück [51]. The method is first demon-

strated using a trivial geometry in order to describe the principles of implementation.

Following this, the method is applied to more general geometrical configurations for

practical use.

Central source constants for a charged ring

Given a circular ring with charge Q and radius R and centered at Z, we shall place

a source point S on the z-axis at (0, z0) (see fig. 4-2). In order to compute the

coefficients of the Legendre polynomial expansion about S for electric potential, we

must first determine the potential at F , an arbitrary on-axis point located at (0, z),

and then convert this solution to an infinite sum involving the Legendre polynomials

and equate it piece-wise with our ansatz, defined in equation 4.2.
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Figure 4-2: Graphical depiction of a charged ring with generating point (R,Z), a
central source point (S), and an arbitrary on-axis field point (F ).

Since the distance d between infinitesimal segments of the ring and F is constant,

the potential at F due to the charged ring (with linear charge density λ = Q
2πR

) is

simply

Φ(F ) =
λ

4πǫ0

∫ 2πR

0

dl′

d
=

1

4πǫ0

Q

d
. (4.13)

We can convert this equation into a Legendre polynomial expansion by manipulating

our definition of 1
d

as follows: first, we define ρ = |z0−z| and ρring =
√

(Z − z0)2 +R2.

Then we can redefine d in terms of these variables as

d =
√

ρ2
ring + ρ2 − 2ρringρ cos θring, (4.14)

where cos θring = |Z−z0|
ρring

. Substituting hcen = ρ
ρring

into equation 4.14 and inverting

both sides, we obtain

1

d
=

1

ρring

√

1 + h2
cen − 2hcen cos θring

. (4.15)

Since this is of the form of the Legendre polynomial generating function, we can
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express equation 4.15 as

1

d
=

1

ρring

∞
∑

n=0

hn
cenPn(cos θring), (4.16)

and recombine equations 4.13 and 4.16 to get

Φ(F ) =
Q

4πǫ0

1

ρring

∞
∑

n=0

hn
cenPn(cos θring). (4.17)

Now that we have a solution for the electric potential at point F in terms of

Legendre polynomials, we can compare it to our solution derived using our ansatz

(eq. 4.3). Since F was chosen to be on-axis (and therefore forms an angle θ = 0 with

the z-axis), we exploit the fact that Legendre polynomials are standardized so that

Pn(cos 0) = Pn(1) = 1, reducing our ansatz for point F to

Φ(F ) =

∞
∑

n=0

Φcen
n |z0

(

ρ

ρcen

)n

. (4.18)

Comparing equations 4.17 and 4.18 and equating like terms, we arrive at a definition

for the central source constants for source point S:2

Φcen
n |z0 =

Q

4πǫ0

1

ρring

(

ρcen

ρring

)n

Pn(cos θring). (4.19)

Remote source constants for a charged ring

The approach used in the previous section can be used for the computation of the

remote source coefficients as well. Starting with equation 4.14, we can substitute

hrem =
ρring

ρ
into the equation and invert both sides to get

1

d
=

1

ρ
√

1 + h2
rem − 2hrem cos θring

(4.20)

2It is advantageous to omit the relation that, for the special case of a ring, ρcen = ρrem = ρring.
By keeping these values distinct, it will be easier to apply the results of the ring calculation to a
general axially symmetric geometry configuration.
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Figure 4-3: Graphical depiction of a charged ring with generating point (R,Z), a
remote source point (S), and an arbitrary on-axis field point (F ).

which, as before, can be expressed in terms of Legendre polynomials as

1

d
=

1

ρ

∞
∑

n=0

hn
remPn(cos θring) =

=
1

ρring

∞
∑

n=0

(hrem)n+1Pn(cos θring) (4.21)

The remote source constants for source point S can then be computed in a similar

manner as were the central source constants. They are defined as

Φrem
n |z0 =

Q

4πǫ0

1

ρring

(

ρring

ρrem

)(n+1)

Pn(cos θring). (4.22)

Source constants for a charged conic section

Using the results for the charged ring, it is a straightforward task to determine the

formulae for the source coefficients of a charged axially symmetric conic section, such

as the one depicted in Figure 4-4. Since the conic section can be seen as a composite

of infinitesimally thin charged rings, the only steps needed to extend the results of

Equations 4.19 and 4.22 are to properly parametrize the components of the formulae,

and then to simply integrate over the length of the conic section. One method for

achieving this is demonstrated below.

Given a conic section with charge density σ and described by the line connecting

two points (Ra, Za) and (Rb, Zb), and a source point S located at (0, z0), we choose

75



r

z

S

(0,z )0

Figure 4-4: Graphical depiction of a charged conic section generated by the line
connecting (Ra, Za) and (Rb, Zb) with length L, and a central source point (S).

as our parametrizing variable x, the length between a point P on the conic section’s

generating line and the endpoint of the line (see Fig. 4-4). With this parameterization,

the definitions for our central and remote source constants, respectively, become

Φcen
n |z0 =

∫ L

0

dx · (σ · 2πR(x))

4πǫ0
· 1

ρ(x)
·
(

ρcen

ρ(x)

)n

Pn(cos (θ(x))) (4.23)

and

Φrem
n |z0 =

∫ L

0

dx · (σ · 2πR(x))

4πǫ0
· 1

ρ(x)
·
(

ρ(x)

ρrem

)(n+1)

Pn(cos (θ(x))), (4.24)

where

L =
√

(Za − Zb)2 + (Ra − Rb)2 (4.25)

describes the length of the generating line segment,

R(x) = Ra + x · (Rb − Ra)

L
(4.26)

and

Z(x) = Za + x · (Zb − Za)

L
(4.27)
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define the (r, z) coordinates of P ,

ρ(x) =
√

(R(x))2 + (Z(x)− z0)2 (4.28)

is the distance between P and the source point S, and

cos (θ(x)) =
(Z(x)− z0)

ρ(x)
. (4.29)

is the angle formed by the intersection of the z-axis and the line connecting P and

S. For application purposes, these integrals can be computed numerically.

Source constants for a general axially symmetric system

Since electric potential is linear in charge (and therefore obeys the law of superpo-

sition), the generalization to M coaxial conic sections can be achieved by simply

summing the source constants for each conic section:

Φcen
n |z0 =

M
∑

m=1

(Φcen
n |z0)m , (4.30)

Φrem
n |z0 =

M
∑

m=1

(Φrem
n |z0)m . (4.31)

For distances sufficiently far from the electrodes, it is also possible to use this tech-

r

z

Figure 4-5: (A) An axially symmetric wire configuration and (B) its electrode ap-
proximation.
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nique to describe the electric field for coaxial wire planes, by approximating them as

conic sections (see Fig. 4-5).

4.3 Legendre polynomials in magnetostatics

In regions where the current density is zero, it is possible to define a magnetic scalar

potential Ψ, such that ∇2Ψ = 0 and
−→
B = −∇Ψ [30]. In regions where it exists, Ψ

is analogous to the electric potential Φ, as they both satisfy the Laplace equation

and can be differentiated to calculate their respective fields. As such, a solution with

the form of equation 4.1 must exist for Ψ as well when the geometries describing

the magnetostatic fields are axially symmetric. Because of this fact, it is possible to

apply the technique of Legendre polynomial expansion for solving magnetic fields, as

well. The general form of the magnetic scalar potential in this expansion (modified

to simplify the expressions for the magnetic field) is

Ψ(rcyl, zcyl) = Ψcen(rcyl, zcyl) + Ψrem(rcyl, zcyl), (4.32)

where

Ψcen(rcyl, zcyl) =

∞
∑

n=0

Ψcen
n |z0

(−ρcen

n + 1

)(

ρ

ρcen

)n+1

Pn+1(cos θ), (4.33)

Ψrem(rcyl, zcyl) =
∞
∑

n=1

Ψrem
n+1|z0

(

ρrem

n+ 1

)(

ρ

ρrem

)−(n+1)

Pn(cos θ), (4.34)
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and the following substitutions have been made:3

r → ρ =
√

r2
cyl + (zcyl − z0)2,

θ → arctan
rcyl

(zcyl − z0)
,

A0 → 0,

An>0 → −Ψcen
n−1|z0

1

n + 1
(ρcen)−n,

B0 → 0,

Bn>0 → Ψrem
n+1|z0

1

n+ 1
(ρrem)n+2.

4.3.1 Regions of convergence

r

z

S

(0,z )0

Figure 4-6: (A) A 3-dimensional rendering of an axially symmetric magnetic coil and
(B) the regions of convergence for central and remote zonal harmonic expansion from
a source point S.

Since equation 4.32 is only applicable in regions containing no current density, the

Legendre polynomial expansion has restricted regions of convergence. It is once again

convenient to describe the areas where the technique holds valid in terms of central

and remote regions. The remote region is defined as a spherical shell whose outer

radius extends to infinity, and whose inner radius is the distance between the source

point to the farthest current (see Fig. 4-6), much like its electric counterpart. The

3In the central expansion, the zeroth term is a constant, and has no influence on the values of the
magnetic field. In the remote expansion, the zeroth term is the magnetic monopole contribution,
which can be omitted.
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region of convergence for the central expansion is somewhat more subtle for magnetic

fields, however, and must be described in the context of the geometry primitives that

generate the field.

For the central expansion of the magnetic scalar potential, the radius of conver-

gence extends from the source point to the closest region of current, as expected.

However, since we are only interested in computing the magnetic field and not the

scalar potential, we can extend our central radius of convergence for solenoids and

for thick coils. For solenoids, Appendix B.2 describes how the magnetic field can be

described in terms of the scalar potential for two rings located at the edges of the

solenoid, thus extending the radius of convergence to be equivalent to a 2-ring con-

figuration. By a similar argument, the central region of convergence for the magnetic

field produced by a thick coil is determined by a 4-ring configuration, with two rings

located at the outer and inner radii of each edge of the coil [53].

4.3.2 Derivation of magnetic field components from magnetic

scalar potential

The derivation of the magnetic field components from equation 4.32 is achieved by

once again employing the special properties of the derivatives of zonal harmonics

(Eqns. 4.5, 4.6, 4.9, and 4.10) onto the central and remote definitions of the magnetic

scalar potential (Eqns. 4.33 and 4.34). The results of these derivations are stated

below:

Central expansion

The magnetic field in the central region is defined as

Bzcyl
= − ∂

∂zcyl

(Ψcen(rcyl, zcyl)) =

=

∞
∑

n=0

Ψcen
n |z0

(

ρ

ρcen

)n

Pn(cos θ) (4.35)
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and

Brcyl
= − ∂

∂rcyl
(Ψcen(rcyl, zcyl)) =

= − sin θ
∞
∑

n=1

Ψcen
n |z0

(

1

n + 1

)(

ρ

ρcen

)n

P ′
n(cos θ). (4.36)

Remote expansion

The magnetic field in the remote region is defined as

Bzcyl
= − ∂

∂zcyl
(Ψrem(rcyl, zcyl)) =

=
∞
∑

n=2

Ψrem
n |z0

(

ρ

ρrem

)−(n+1)

Pn(cos θ) (4.37)

and

Brcyl
= − ∂

∂rcyl

(Ψrem(rcyl, zcyl)) =

=

∞
∑

n=2

Ψrem
n |z0

sin θ

n

(

ρ

ρrem

)−(n+1)

P ′
n(cos θ). (4.38)

4.3.3 Calculating Source Constants

This section describes the computation of the source constants Ψcen
n |z0 and Ψrem

n |z0 for

different geometrical primitives. Since the magnetic fields are more readily calculable

than the scalar potential, it is convenient to utilize the methods of Garrett [49] and

Glück [50] for determining the source constants from the fields. As with the electric

source constants, the method is first demonstrated using a trivial geometry in order to

describe the principles of implementation, followed by its application to more general

geometrical configurations for practical use.

Central source constants for a current loop

Given a circular current loop with current I and radius R and centered at Z, we place

a source point S on the z-axis at (0, z0) (see fig. 4-7). The method for computing the
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Figure 4-7: Graphical depiction of a current loop with generating point (R,Z), a
central source point (S), and an arbitrary on-axis field point (F ).

source constants at S is similar to that of the charged ring (Sec. 4.2.3), with a few

key changes: we compare the derived calculation of the z-component of the magnetic

field with 4.35 at an arbitrary point F on the z-axis, since its computation is more

straightforward than that of the magnetic scalar potential.

Symmetry arguments allow us to conclude a priori that Br = 0 for all on-axis field

points. Invoking the Biot-Savart Law [40][30], we can determine that the z-component

of the magnetic field is

Bz(F ) =
µ0

4π
I

∫ 2πR

0

dl′

d2
cos θring =

µ0I

2

R2

d3
. (4.39)

As before, d is redefined in terms of ρ = |z0 − z| and ρring =
√

(Z − z0)2 +R2 to be

Equation 4.14, and this is in turn converted into a Legendre polynomial expansion

using hcen = ( ρ
ρcen

):

1

d
=

1
√

ρ2
ring + ρ2 − 2ρringρ cos θring

=
1

ρring

∞
∑

n=0

hn
cenPn(cos θring). (4.40)
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Taking the derivative of 1
d

with respect to cos θring yields

∂

∂ (cos θring)

(

1

d

)

=
ρring · ρ

(

ρ2
ring + ρ2 − 2ρringρ cos θring

)
3
2

=

=
1

ρring

∞
∑

n=0

hn
cenP

′
n(cos θring). (4.41)

Further simplification of Equation 4.41 yields

1

d3
=

(

1

ρring

)3 ∞
∑

n=0

hn
cenP

′
n+1(cos θring). (4.42)

Substituting Equation 4.42 into 4.39 and equating the result to our ansatz (Eq. 4.35),

we get
µ0I

2

R2

ρ3
ring

∞
∑

n=0

(

ρ

ρring

)n

P ′
n+1(cos θring) =

∞
∑

n=0

Ψcen
n |z0

(

ρ

ρcen

)n

, (4.43)

which can be algebraically manipulated to determine the value of the central source

constants Ψcen
n |z0:

Ψcen
n |z0 =

µ0I

2
· sin

2 θring

ρcen
·
(

ρcen

ρring

)(n+1)

P ′
n+1(cos θring). (4.44)

Remote source constants for a current loop

Figure 4-8: Graphical depiction of a current loop with generating point (R,Z), a
remote source point (S), and an arbitrary on-axis field point (F ).

The derivation of the remote source constants for a current loop is similar to to

83



that of the central source constants for the same loop. Much like what was done for

a charged ring, hrem = (
ρring

ρ
) is used to redefine d, the distance between the on-axis

field point F and the ring. Taking the derivative of 1
d

with respect to cos θring yields

∂

∂ (cos θring)

(

1

d

)

=
ρring · ρ

(

ρ2
ring + ρ2 − 2ρringρ cos θring

)
3
2

=

=
1

ρ

∞
∑

n=0

hn
remP

′
n(cos θring). (4.45)

Simplifying Equation 4.45, we get

1

d3
=

(

1

ρring

)3 ∞
∑

n=1

h(n+2)
rem P ′

n(cos θring). (4.46)

Inserting Equation 4.46 into 4.39 and equating it to our ansatz (Eq. 4.37), we get

µ0I

2
· R

2

ρ3
ring

·
∞
∑

n=2

h(n+1)
rem P ′

n−1(cos θring) =

∞
∑

n=2

Ψrem
n |z0

(

ρ

ρrem

)−(n+1)

, (4.47)

which, when analyzed piecewise, produces the definition for the remote source con-

stants for a current loop:

Ψrem
n |z0 =

µ0I

2
· sin

2 θring

ρrem

·
(

ρring

ρrem

)n

P ′
n−1(cos θring). (4.48)

Source constants for an infinitely thin solenoid

Using the results derived in the previous section, it is possible to determine the

source points from an infinitely thin solenoid (like the one described in Fig. 4-9) by

analytically integrating Equations 4.44 and 4.48 over the length of the solenoid. For

the central expansion coefficients, we begin with

Ψcen
n |z0 =

µ0 · |~k|
2

∫ Zb

Za

sin2 (θ(Z))

ρcen

(

ρcen

ρ(Z)

)(n+1)

P ′
n+1(cos (θ(Z))) · dZ, (4.49)

where

ρ(Z) =
√

R2 + (Z − z0)2 (4.50)
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Figure 4-9: Graphical depiction of a solenoid generated by the line connecting (R,Za)

and (R,Zb) with surface current density ~k, and a central source point (S).

and

θ(Z) = arccos

(

Z − z0
ρ(Z)

)

(4.51)

for Za ≤ Z ≤ Zb. We can use the recursive nature of the derivatives of the zonal

harmonics to rewrite the integrand of Equation 4.49, which we label as

ψcen
n |z0(Z) =

sin2 (θ(Z))

ρcen

(

ρcen

ρ(Z)

)(n+1)

P ′
n+1(cos (θ(Z))), (4.52)

as follows: Using the property of the Legendre polynomials [49] that

sin2 (θ) · P ′
n(cos (θ)) =

(−1)n−1

(n− 1)!
· ρn · ∂

n cos (θ)

∂Zn
, (4.53)

Equation 4.52 becomes

ψcen
n |z0(Z) = (ρcen)

n · (−1)n

n!
· ∂

(n+1) cos (θ(Z))

∂Z(n+1)
. (4.54)

Similarly, we can write ψcen
n+1|z0 as

ψcen
n+1|z0(Z) = (ρcen)

(n+1) · (−1)n+1

(n+ 1)!
· ∂

(n+2) cos (θ(Z))

∂Z(n+2)
. (4.55)
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Equation 4.55 can now be rewritten in terms of Equation 4.54 as

ψcen
n+1|z0(Z) = − ρcen

(n + 1)
· ∂
∂Z

(ψcen
n |z0) . (4.56)

With this relation, performing the integration in Equation 4.52 for the case n > 1

becomes trivial:

Ψcen
n |z0 =

µ0 · |~k|
2
·
∫ Zb

Za

ψcen
n |z0 · dZ =

=
µ0 · |~k|

2

∫ Zb

Za

dZ ·
(

−ρcen

n

)

· ∂
∂Z

(

ψcen
n−1|z0

)

=

= −µ0 · |~k|
2
· ρcen

n
·
[

ψcen
n−1|z0(Zb)− ψcen

n−1|z0(Za)
]

. (4.57)

For n = 0, the Legendre polynomial term is equal to unity, and the integral can be

performed in a straightforward manner to produce

Ψcen
0 |z0 =

µ0 · |~k|
2

(

(Zb − z0)
√

R2 + (Zb − z0)2
− (Za − z0)
√

R2 + (Za − z0)2

)

. (4.58)

Similarly, to compute the remote source coefficients for the solenoid in Figure 4-9

we start with

Ψrem
n |z0(Z) =

µ0 · |~k|
2

∫ Zb

Za

sin2 (θ(Z))

ρrem

(

ρ(Z)

ρrem

)n

P ′
n−1(cos (θ(Z))) · dZ. (4.59)

Once again, we label the integrand of Equation 4.59 as

ψrem
n |z0(Z) =

sin2 (θ(Z))

ρrem

(

ρ(Z)

ρrem

)n

P ′
n−1(cos (θ(Z))). (4.60)

Using the relation

ψrem
n |z0(Z) =

ρrem

n + 1
· ∂
∂Z

(ψrem
n+1|z0) (4.61)

86



derived in Appendix B, Equation 4.59 becomes

Ψrem
n |z0 =

µ0 · |~k|
2

∫ Zb

Za

ψrem
n |z0 · dZ =

=
µ0 · |~k|

2

∫ Zb

Za

dZ ·
(

ρrem

n + 1

)

· ∂
∂Z

(

ψrem
n+1|z0

)

=

=
µ0 · |~k|

2
· ρrem

n+ 1
·
[

ψrem
n+1|z0(Zb)− ψrem

n+1|z0(Za)
]

. (4.62)

Source constants for a thick coil

r

z
Za Zb

J

S

(0,z )0

Figure 4-10: Graphical depiction of a thick coil generated by the rectangle with
corners (Ra, Za) and (Rb, Zb) with volume current density ~J , and a central source
point (S).

In a similar fashion, we determine the source constants for a thick coil (such as

the one depicted in Fig. 4-4) by using Equations 4.57 and 4.62 for an infinitely thin

solenoid and integrating over the thickness of the coil (Rb − Ra). For the central

expansion, our source constants are defined as

Ψcen
n |z0 =

µ0 · | ~J|
2

·
∫ Rb

Ra

ψ̃cen
n |z0(R) · dR, (4.63)

where

ψ̃cen
n |z0(R) =

ρcen

n
·
[

ψcen
n−1|z0(Zb)− ψcen

n−1|z0(Za)
]

, (4.64)
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and ψcen
n |z0(Z) is defined in Equation 4.52 with implicit dependencies upon R. The

remote source constants are defined as

Ψrem
n |z0 =

µ0 · | ~J|
2

·
∫ Rb

Ra

ψ̃rem
n |z0(R) · dR, (4.65)

where

ψ̃rem
n |z0(R) =

ρrem

n+ 1
·
[

ψrem
n+1|z0(Zb)− ψrem

n+1|z0(Za)
]

, (4.66)

and ψrem
n |z0(Z) is defined in Equation 4.60, once again with implicit dependencies

upon R. The integrals described in Equations 4.63 and 4.65 can be computed using

numerical integration techniques.

4.4 Summary

The method of zonal harmonic expansion facilitates the fast computation of axially

symmetric electric and magnetic fields within the central and remote regions of con-

vergence, with the speed of computation proportional to the distance between the field

point and the nearest geometry primitive. Methods of computing the source points

for various axially symmetric geometry primitives have been described, facilitating

the computation of electric and magnetic fields from relatively complex geometry

configurations comprised of these primitives. When the assumption of axial sym-

metry is valid and field points are sufficiently far from the geometry primitives, the

method of zonal harmonics is the most effective technique for fast and accurate field

computation.
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Chapter 5

Field Interpolation with an Adaptive

Refinement Field Map

5.1 Introduction

5.1.1 Features of current routines

The techniques of elliptic integral computation and zonal harmonic expansion de-

scribed in Chapters 3 and 4, respectively, are applicable to the computation of both

electric and magnetic fields. In theory, a combination of the two methods adequately

constitutes a complete time-independent electromagnetic simulation package on its

own. For practical use, however, it is important to understand the specific circum-

stances to which each of these methods are suited and, more importantly, to identify

the situations that highlight their shortcomings.

The method of zonal harmonic expansion described in Chapter 4 provides for

fast and accurate electric field calculations in regions far from geometry primitives,

where the expansion converges quickly. It is limited to axially symmetric geometries,

however, and cannot be used in regions close to electrode surfaces. The elliptic

integral method of calculation, described in Chapter 3, is applicable in all space

(and indeed is necessary for the computation of the charge densities of each of the

electrode sub-elements, an essential step for both the elliptic field calculation and
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the zonal harmonic expansion). The amount of time necessary to perform elliptic

integrals over each sub-element is rather large, unfortunately, and the computation

time for a single field point quickly becomes unwieldy when a geometry configuration

has many sub-elements.

For many simulations, the shortcomings of these two methods do not play a

large role. For example, a simulation of electron transport through nearly the en-

tirety of KATRIN (with axially symmetric approximations for the pre- and main-

spectrometer) is deftly handled by continuous use of zonal harmonic expansions, and

the elliptic integral method may only need to be used sporadically. In this situation,

it is clear that all of the necessary tools for performing a fast and accurate simulation

are already constructed.

There are many instances, however, where these limitations cause the aforemen-

tioned techniques to be difficult, if not impossible, to implement practically. Exam-

ples where this is the case are studies of radiation from the electrodes, simulations

of calibration via an electron gun, and precision calculations where axial symmetry

approximations can no longer be made. Ways around these limitations include using

more powerful tools for computation, and different techniques for field computation,

such as field mapping.

5.1.2 General features of a field map

The basic idea behind implementing a field map is quite simple: a grid is placed on

the region where computation is desired, the function is computed at the nodes of

the grid and saved to file. Once the grid and field values are determined, an inter-

polating function is used to approximate the function value within the grid using the

predetermined field values at the nodes of the grid. Since field maps have become

a standard technique in computational analysis, it suffices to curtail any further de-

scription of their general attributes; the reader is encouraged to see [54] and other

numerical analysis texts for more details. Instead, it is important to focus on the

features of field maps relative to the methods of elliptic integral calculation and zonal

harmonic expansion.
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Since a field map can be implemented in any region where the interpolated function

is valid, and since the electric and magnetic fields can be computed in all space using

elliptic integral calculations, a field map theoretically has no restrictions on its regions

of use. However, practical application places limitations on the size of the map.

The time it takes to generate a field map and the speed of traversing its nodes are

both proportional to the size of the map, naturally favoring smaller maps for faster

generation and implementation. Table 5.1 relates these general properties of a field

map to the comparative features of the other two methods.

Method Regions of Dimension Computation Relative speed
applicability time dependency of computation

Elliptic all space 2, 3 # of slow
Integrals sub-elements

Zonal away from 2 distance from fastest
Harmonic geometry geometry

Field Map all space 2, 3 size of map faster

Table 5.1: Features of field computation methods (assuming that the desired accuracy
from each method is equivalent)

Fortunately, the features (both positive and negative) of a field map correspond

well with those of the method of zonal harmonic expansion. Where the zonal har-

monic expansion method can cover most of space (with use of multiple source points)

with relatively fast computation times, the regions where it fails can be covered by

a field map, thereby eliminating the necessity (and time) of repeated elliptic inte-

gral computations. It is still possible to use a field map for geometries that do not

posses axial symmetry, but for large regions of computation a field map may become

impractical and another form of calculation may be needed.

5.2 Interpolation technique

5.2.1 Reduced multivariate Hermite interpolation

The interpolation method employed in KatrinField is a variant of a fourth order

reduced multivariate Hermite interpolation technique [44]. Similar methods may be
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found in [55], [56] and [57]. During the construction of the map, a d-dimensional

grid of nodes is placed over the region of interest, and at each node the field value

and its d gradient components are computed and stored1. Once the grid is in place,

a field point within the grid is computed as follows: first, a d-dimensional box with

2d nodes as its vertices is formed to encompass the field point. The coordinates of

the field point are then rescaled to a local frame, where the box is centered at the

origin and the lengths of the sides of the box are all 2 × unity (see Fig. 5-1). The

function is then approximated using third order polynomials, constructed to match

the (d+ 1)× 2d boundary conditions ((d+ 1) values per node × 2d nodes).

5.2.2 Features of the interpolator

Compared to other methods, the Hermite interpolation method possesses two key

features. Since only the 2d nodes that form the surrounding box are used for a single

computation, the method facilitates the organization of the nodes into boxes. This

is useful for constructing node traversal algorithms, and it also sidesteps the issues

involving hanging nodes [58] and neighbor-finding techniques [59] present in many

other interpolation methods. Also, because the method only uses the function value

and its first partial derivatives (as opposed to mixed partials), inaccuracies resulting

from repeated numerical differentiation are avoided and fewer terms are required

within the interpolation (in contrast to the method introduced in [60], for example).

5.2.3 Derivation of the interpolator in d dimensions

We now follow the derivation for the Hermite interpolating function from the 2d nodes,

each containing (d+1) parameters, originally determined by Glück [44]. We shall label

the function whose values we are trying to interpolate as F (~p), and the interpolating

function G(~p), where ~p represents the point in space where the field value is to be

determined. The interpolating box is defined to be centered at the origin, with sides

1For our purposes, the dimensionality d is either 2 (for axially symmetric systems) or 3.
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Figure 5-1: For d = 3, a cube centered at the origin with sides of length 2 used
for interpolation. Axes are labeled as î, i = 1, 2, 3. Vertices are labeled as ~uj,
j = 1, 2, ..., 8.

of length 2 × the unit length (see Fig. 5-1). We define as our ansatz

G(~p) =
2d
∑

i=1

d
∑

j=0

gijΦij(~p), (5.1)

where

gij =







F (~ui) j = 0

∂F (~p)

∂ĵ

∣

∣

∣

~p=~ui

j = 1, . . . , d
(5.2)

and ~ui represents the position of the i-th vertex of the cube in d-space, and Φij(~p)

is a scalar function. Our task is to determine a form for Φij(~p) that satisfies the

(d+ 1)× 2d boundary conditions of the cube.

We begin by proposing an ansatz for Φij(~p):

Φij(~p) = uij

d
∏

k=1

φjk(t), (5.3)

where

uij =







1 j = 0

~ui · ĵ = (~ui)j j = 1, . . . , d
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and

t = (~ui)k(~p)k.

Enforcing the condition that the interpolated function equal the original function at

the vertices (G(~un) = gn0, n = {1, 2, . . . , 2d}), we are immediately able to determine

that Φij(~un) = δinδj0. Applying this restriction to Equation 5.3 gives us the following

relation:

Φij(~un) = uij

d
∏

k=1

φjk ((~ui)k( ~un)k) = δinδj0. (5.4)

If the vectors ~ui and ~un describe different vertices of the cube (i 6= n), then for at

least one k = k′ the term in the product of Equation 5.4 will be φjk′(−1). 2 Similarly,

if ~ui and ~un describe the same vertex of the cube (i = n), Equation 5.4 becomes

uij

d
∏

k=1

φjk(1) = δj0. (5.5)

The δin term on the right side of equation 5.4 can therefore be enforced by requiring

φjk(−1) = 0 ∀ j, k, (5.6)

while, since k > 0, the δj0 term can be enforced by requiring that

φjk(1) = 1− δjk. (5.7)

These two requirements describe the boundary conditions on φjk(t) that require the

interpolated function value to be exact at the 2d vertices of the box.

Next, we require that the directional derivatives of the interpolated function be

2Since the cube is centered at the origin with sides of 2 × unit length, the components of the
vectors describing the vertices will be of the form (~ui)k = ±1. When computing t = (~ui)k(~un)k, it
becomes clear that, if i 6= n, one of the d components of ~ui and ~un must differ, whereas if i = n, t

will equal (±1)2 = 1.
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exact at the vertices as well. That is, we require that

∂l(G(~p))|~p=~un =
2d
∑

i=1

d
∑

j=0

gij∂l(Φij(~p))|~p=~un = gnl. (5.8)

Applying this restriction to Equation 5.3 gives us

∂l(Φij(~p))|~p=~un = ∂l

(

uij

d
∏

k=1

φjk ((~ui)k(~p)k)

)

|~p=~un = δinδjl. (5.9)

Taking the partial derivative of Equation 5.3 with respect to l̂, we get

∂l(Φij(~p)) = uij · (~ui)l · φ′
jl((~ui)l(~p)l) ·

d
∏

k=1,k 6=l

φjk((~ui)k(~p)k). (5.10)

Applying Equation 5.10 to Equation 5.9 in the case where l = 1, we obtain the

following condition:

uij · ui1 ·
(

φ′
j1(ui1un1)

)

· (. . .) · (φjd(uidund)) = δinδj1. (5.11)

We can see from Equation 5.11 that, if i 6= n, there exists a k′ such that either φ′
j(k′=1)

or φj(k′ 6=1) takes −1 as its argument. We can therefore satisfy the δin term on the

right side of the equation by requiring that φ′
jk(−1) = 0 ∀ j, k. 3

Similarly, if i = n both φ′
j(k′=1) and the φj(k′ 6=1) terms take 1 as their argument.

We can enforce the δjl term on the right side of equation 5.11 by requiring that

φ′
jk(1) = δjk.

4

3This requirement is sufficient, since it is already required that φjk(−1) = 0 ∀ j, k.
4Requiring that φ′

jk(1) = δjk ensures that the prefactors uij · uil = 1, since (uij)
2 = 1 ∀ i, j.
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We now have the following boundary conditions for φjk(t):

φjk(−1) = 0 (5.12)

φjk(+1) = 1− δjk (5.13)

φ′
jk(−1) = 0 (5.14)

φ′
jk(+1) = δjk (5.15)

Next, we let φjk be a cubic interpolant of the following form:

φjk(t) = f1(t) + f2(t)δjk, (5.16)

where

f1(t) = c1t
3 + c2t

2 + c3t+ c4 (5.17)

and

f2(t) = e1t
3 + e2t

2 + e3t+ e4, (5.18)

and ci and ei are constants. Solving the related linear algebraic equations, we get the

following equation:

φjk(t) =
1

4

(

(−t3 + 3t+ 2) + (2t3 + t2 − 4t− 3)δjk
)

. (5.19)

Though the final equation is too cumbersome for print in a single equation, it is clear

that Equations 5.1, 5.3 and 5.19 constitute the interpolating function we set out to

find.

5.3 Adaptive-Refinement Field Map

5.3.1 General technique

The two main issues for computing a field map are finding a quick and accurate

interpolating function (see Sec. 5.2), and striking a balance between node density
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Figure 5-2: For d = 3, a depiction of a parent cube and its 8 subcubes.

and accuracy. A field with too many nodes will invariably produce a large file and

be computationally expensive to navigate, while a field with too few nodes will lack

sufficient information to perform accurate interpolations, resulting in a decrease in

overall accuracy. For the latter issue, we use an adaptive-refinement field map [58].

To construct an adaptive-refinement field map, a uniform grid is created that

covers the region of interest. Then, the interpolated field value is compared against

the actual field value for each of the boxes in the grid. In regions where the error of

the interpolated value exceeds a predefined limit, the box is further subdivided into

smaller boxes (see Fig. 5-2). For the sake of discussion, the original box is referred

to as a parent box, while boxes that result from the subdivision are referred to as

children boxes. The process of subdivision continues until the error across the entire

map is uniformly less than the given limit.

5.3.2 Quad-trees and oct-trees

The method of adaptive-refinement lends itself naturally to the use of quad-trees

and oct-trees for 2 and 3 dimensions, respectively (see Fig. 5-3) [59]. This form of

management is achieved by saving within each box information about its parent and

children boxes. The search for the appropriate box for interpolating a given field
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(A) (B)

Figure 5-3: For d = 2, (A) an example of an adaptive refinement field mesh and (B)
its corresponding quad-tree. In (B), Shaded regions represent boxes where the error
of interpolation is acceptable for computation, and white regions represent boxes
that required further splitting. Though only the shaded boxes are used for field
computation (assuring a uniform maximal error), the white boxes are kept in the tree
to facilitate the searching process.

point is then accomplished by traversing the tree from parent box to children boxes,

hereafter referred to as a top-down search. According to [61], searches performed in

this manner have an average time cost of ∼ 2
d
· logn, where d is the dimensionality

(as before), and n represents the number of boxes in the tree. In comparison, the

average time cost for a sequential search is ∼ 2d−1
2(d+1) · n, which clearly proves more

costly for large n.5 Similarly, tree navigation can occur in a bottom-up search, where

each parent box is tested until a parent box is found to contain the field point. By

using both top-down and bottom-up searches in tandem, the time cost of repeatedly

navigating the field map can be even further reduced.

5.3.3 Constructing the field map

Two methods for constructing an adaptive-refinement field map are to either sequen-

tially construct each branch of the tree, or to sequentially construct each level of boxes.

The method described in this section is an amalgam of the two. At the highest level,

each box in the grid (hereafter referred to as a meta-box ) has its own “branch” of

5The time cost 2
d
−1

2(d+1) ·n is obtained by first noting that, for a sequential search, only 2
d
−1

2d of the

boxes in the tree are used in computation. Of these, ∼ 1

2
must be traversed for each search.
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the field map (which is a quad or oct-tree), and these are built sequentially. The

construction of the trees in each meta-box, however, is performed one level at a time.

While the sequential creation of each meta-box is self-explanitory, the level-by-

level process of constructing the trees in each meta-box is best explained by the

following pseudocode:

1: construct the first box, and assign its children as the next 2d boxes in the array

2: define integers firstBox = 0, lastBox = 0, nBoxes = 1

3: for n = 0 to nLevel do {loop over the levels of the tree}

4: firstBox⇐ lastBox, lastBox⇐ nBoxes

5: for i = firstBox to lastBox do {loop over the # of boxes in level n}

6: if box i must be subdivided then

7: for j = 0 to 2d do

8: construct child box j, assign its parent as i, and compute its field points

9: if box j must be subdivided and (n+ 1) 6= last level in the tree then

10: assign box j’s children as nBoxes to nBoxes + 2d

11: nBoxes⇐ nBoxes + 2d

12: else

13: assign box j’s children as −1 {null parameter indicating no children}

14: end if

15: add box j to the array of boxes

16: end for

17: end if

18: end for

19: end for

There are several reasons for this method of construction: by having each meta-box

contain its own individual tree, we are able to save a large map over multiple files

with logical divisions in file management. Meanwhile, by creating each individual file

using the level-by-level approach, each tree naturally acquires a logical organizational

structure, and each box must be saved only once (once its parameters are stored,

they are not changed). A one-time instantiation of the boxes works well with many
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optimized tree-creating algorithms, where rapid access is favored over ease of creation.

5.4 Summary

The methods of an adaptive-refinement field map and a multivariate Hermite inter-

polator complement the existing methods of direct field calculation (Chapter 3) and

zonal harmonic expansion (Chapter 4) well, providing for an efficient means to com-

pute fields in regions that are frequently traversed and would otherwise have slow

computation times. Admittedly, the field map technique lacks both the elegance and

physically intuitive nature of the previous two methods, favoring instead a brute-force

means of computation. However, since access to large computer clusters is becoming

more common, techniques that require massive computational power are now much

more practical for application.
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Chapter 6

Validation

6.1 Introduction

In order to confirm that the field solving methods are producing sensible results and

to understand the sources and magnitude of error implicit within the methods, it is

essential to perform tests to validate the routines. This chapter describes various tests

designed to both validate the methods described in this thesis as they are implemented

in KatrinField, and to quantify the accuracies achieved using these methods. The

tests cover all three field calculating methods for various geometry primitives.

6.2 BEM and direct calculation tests

Since the self-capacitance of an electrode is determined by the ratio of the electrode’s

net charge to its potential, a numerical measurement of the capacitance requires use

of the BEM to determine the charge distribution on an electrode, and the direct

calculation method compute the potential due to the computed charge distribution.

By selecting simple geometries whose capacitances are either analytically soluble or

known to high precision, it is possible to obtain concrete comparisons between the

computed capacitances and their accepted values. As a result, the numerical mea-

surement of an electrode’s self-capacitance provides insight into the accuracy of both

of these techniques.
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1m

(A)

(B) (C)

Table 6.1: (A) Measurement of the capacitance of a unit disc by discretizing the
disc into concentric circles with decreasing thicknesses at the edge and center. (B)
Comparative accuracy of the computed capacitance and (C) the time of computation
with respect to the number of circular sub-elements.

The first validation test performed compares the numerical capacitance Ccomputed

of a unit disc (see Table 6.1 (A)) to the analytic value Canalytic = 8πǫ0 [62]. As can be

seen in Table 6.1 (B), the computed capacitance of the unit disc inversely proportional

to the number of discretized sub-elements used to perform the computation. As

expected, Table 6.1 (C) shows a quadratic relationship between the number of sub-

elements and the computation time, as the process of solving the linear algebraic

Equation 3.29 scales with the square of the number of sub-elements.

The next validation test compares the numerical capacitance of a unit cube (see

Table 6.2 (A)) to the value Cbest = 0.6606782 ± 1 × 10−7, computed in [63].1 The

1This test is modified from a test originally performed by Dr. Ferenc Glück [44].
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(A) (B)

(C) (D)

Table 6.2: (A) Measurement of the capacitance of a unit cube by discretizing the cube
faces into rectangles with decreasing areas at the edges. (B) Comparative accuracy
of the computed capacitance and (C) the time of computation with respect to the
number of rectangle sub-elements. (D) Same test as performed in (B), but with each
rectangle split into two right triangles.

computation was performed first using rectangles (see Table 6.2 (B)), and then using

triangles (see Table 6.2 (D)). The capacitance measurements for both rectangular

and triangular sub-elements both initially converge upon the expected value. Further

tests are being performed in order to explain the sudden divergences from the true

value in both plots, though preliminary analysis indicates that the divergences may be

due to compounding errors from the potential calculation of each sub-element. In its

current form, however, it appears that rectangular sub-elements achieve a sufficiently

stable accuracy for use in field calculation.

Finally, the last validation test for the direct calculation method compares electric
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(A)

(B) (C)

Table 6.3: A comparison of the direct computation method for a cylinder described
by conic sections and by rectangles. Figure (A): The difference between the electric
potential values for the two geometries. Figure (B): The difference between the mag-

nitude of the computed ~E-field values for the two geometries. Figure (C): The angle

θ between the computed ~E-field vectors for the two geometries.

field and potential at randomly selected points due to a cylinder held at unit potential.

The cylinder is constructed first using conic sections, and then with multiply repeated

rectangles.2 Using the two different representations of the same geometry, electric

field values at 1000 points are computed, and the difference between the potential

and magnitude of the ~E-field, as well as the cosine of the angle between the ~E-field

vectors, are placed into histograms. The results of this test are displayed in Table

6.3, and demonstrate an agreement between the two geometrical configurations to

∼ 10−5.

2This test is modified from a test originally performed by Dr. Ferenc Glück [44].
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6.3 Comparison between direct calculation and zonal

harmonic methods

r

z

(A) (B)

(C) (D)

Table 6.4: Figure (A): Comparison of the direct and zonal harmonic field compu-
tation techniques for a cylinder electrode. Figure (B): The difference between the
two methods’ values for computing the electric potential. Figure (C): The difference

between the magnitude of the ~E-field computed by the two methods. Figure (D):

The angle θ between the two ~E-field vectors computed by the two methods.

The validation tests in this section are designed to compare the zonal harmonic

methods (where the field values are computed via Legendre polynomial expansion) for

electric potential and electric and magnetic fields to the direct calculation methods

(where the field values are computed from the charges and currents directly). For

the electric potential and electric fields, a cylinder is used with dimensions defined

105



r

z

(A)

(B) (C)

Table 6.5: Figure (A): Comparison of the direct and zonal harmonic field computation
techniques for a thick coil magnet. Figure (B): The difference between the magnitude

of the ~B-field computed by the two methods. Figure (C): The angle θ between the

two ~B-field vectors computed by the two methods.

in Table 6.4 (A), and 105 points are chosen at random from both inside and outside

the cylinder. From Table 6.4 (B), it can be seen that the the electric potential

values computed by the two methods are accurate to nearly machine accuracy (∼
10−16). Since the direct computation method utilizes numerical differentiation to

compute the electric fields, however, the magnitude of the electric fields as computed

by both methods is only accurate to∼ 10−9 (see Table 6.4 (C)). This demonstrates the

inherent inaccuracy of the numerical differentiation technique, so chosen to balance

accuracy and computation speed. From Table 6.4 (D) it can be seen that the angle θ

between the electric field vectors for both methods is accurate to machine accuracy,

resulting in stratified binning.
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Similarly, the magnetic field tests are performed using a single thick coil with

dimensions defined in Table 6.5 (A), with 105 points chosen at random both inside and

outside of the coil. As can be seen from Table 6.5 (B) and (C), both the magnitude and

angle between the magnetic fields are accurate to machine accuracy. It is unsurprising

that the magnetic field values are more accurate than those for the electric field,

since there is no accuracy loss resulting from the BEM and numerical differentiation

techniques.

6.4 Field map tests

While the use of field maps are fully implemented in KatrinField, the construction

of a field map that would produce competitive field values to the direct and zonal

harmonic methods requires computation on a dedicated grid. Currently, KatrinField

is designed to accomplish this very task by using MPI (Message Passing Interface)

protocols [64]. These routines are currently in testing, but have not yet reached

completion.

In order to demonstrate the functionality of the field map routines, a test program

has been constructed that reproduces the values of a 2-dimensional function F (x, y),

F (x, y) = sin(2 · x · y). (6.1)

The field map created has a tolerance of 10−6, and has 8 levels of cube splitting. As

can be seen in Table 6.6, the desired minimum accuracy is achieved across the map.

6.5 Summary

The validation tests described in this chapter demonstrate the basic functionality of

the BEM method of charge computation and the direct, zonal harmonic and field

map methods of field calculation. In addition, the tests expose the intrinsic errors

associated with each method, providing for a general understanding of the accuracy

of the field calculation program KatrinField as a whole. With these tests in mind, a
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(A)

(B) (C)

Table 6.6: A 2-dimensional field map, with tolerance 10−6 and 8 levels of cube split-
ting, of a sample function. Figure (A): an image of the original function. Figure (B):
the original function with an overlay of the field map cubes. Figure (C): an image of
the difference between the original and interpolated field values.

user is able to better understand the application of the components of KatrinField,

and how to apply each method to maximize the utility of the program.
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Chapter 7

Conclusion

Simulation of the electromagnetic design is vital for nearly every phase of the KATRIN

experiment. In this thesis, pre-existing and new methods for fast and accurate field

calculation were introduced within a unified object-oriented framework for use by the

KATRIN collaboration for determining design specifications, quantifying background

signals and simulating particle transport.

BEM techniques have been described and demonstrated for use in for computing

charge densities on electrode surfaces. By discretizing electrode surfaces into sub-

elements for which an analytic solution for the electric potential exists, it has been

shown that the electric field due to an arbitrary electrode configuration can be com-

puted in all regions of space. Similarly, analytic solutions to thick coil magnets have

been derived to facilitate the computation of the magnetic field for an arbitrary con-

figuration of magnets used in the KATRIN experiment. With these techniques, the

electrostatic and magnetostatic fields used in KATRIN can be computed everywhere.

Using zonal harmonic expansion techniques, it has been demonstrated that the

electric and magnetic fields from an axially symmetric configuration of electrodes and

coil magnets can be rapidly computed with high accuracy in regions where repeated

field calculations are often necessary in simulation. Approximations have been de-

scribed for nearly axially symmetric systems, allowing these techniques to be applied

to a larger subset of electrode configurations (including those present in KATRIN’s

pre- and main spectrometers). As a result, the zonal harmonic expansion techniques
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provide methods for rapidly computing KATRIN’s electromagnetic fields within its

regions of applicability.

Bridging these two techniques, an adaptive-refinement field mapping method has

been introduced for the purpose of fast and accurate calculations in regions where

zonal harmonic expansions fail to converge. By computing field maps over regions

where repeated field calculation is necessary but computationally expensive, it is

possible to construct arbitrary regions in space where the field is readily and quickly

calculable. This allows for rapid field computation in the entire KATRIN experiment,

with no regions of exemption.

Most importantly, the KatrinField program utilizes these three field-solving tech-

niques all together, offsetting the weaknesses of one method with the strengths of an-

other. The interplay of these techniques within a cohesive object-oriented structure

allows for KatrinField to be used ubiquitously across all of KATRIN’s simulation

projects. As different techniques and improvements upon the existing methods for

field computation emerge, it will be possible to augment this framework as neces-

sary, providing a uniform means of electromagnetic computation for the KATRIN

experiment.
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Appendix A

Formulae for the potential of a right

triangular sub-element

double I_3( double a , double b , double u)

{

// This func t i on computes the f o l l ow ing i n d e f i n i t e i n t e g r a l

// a n a l y t i c a l l y :

// F=\in t du \ as inh ( ( a + b∗u )/ ( ( u^2 + 1)^(1/2 ) ) )

// This came out o f

// Mathematica

double p [ 1 2 ] ; // repeated va lue s ca l cu l a t ed beforehand to

// i n c r e a s e speed

p [ 0 ] = a∗a ; // a^2

p [ 1 ] = a∗p [ 0 ] ; // a^3

p [ 2 ] = a∗p [ 1 ] ; // a^4

p [ 3 ] = a∗p [ 2 ] ; // a^5

p [ 4 ] = a∗p [ 3 ] ; // a^6

p [ 5 ] = b∗b ; // b^2
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p [ 6 ] = b∗p [ 4 ] ; // b^3

p [ 7 ] = b∗p [ 5 ] ; // b^4

p [ 8 ] = b∗p [ 6 ] ; // b^5

p [ 9 ] = u∗u ; // u^2

p [ 1 0 ] = sq r t (1 + p [ 0 ] + 2∗a∗b∗u + (1 + p [ 5 ] ) ∗ p [ 9 ] ) ;

p [ 1 1 ] = sq r t (1 + p [ 5 ] ) ;

double va lue = u∗ as inh ( ( a + b∗u)/ sq r t (1 + p [ 9 ] ) ) +

( atan ( ( p [ 2 ] ∗ b∗p [ 1 0 ] +

2∗p [ 0 ] ∗ p [ 6 ] ∗
p [ 1 0 ] +

p [ 8 ] ∗ p [ 1 0 ] −
p [ 3 ]∗ ( 2 ∗b∗(1 + p [ 9 ] ) +

u∗p [ 1 0 ] ) +

a∗p [ 6 ]∗ ( 2 ∗ ( 1 + p [ 5 ] ) ∗ ( 1 + p [ 9 ] ) −
b∗u∗p [ 1 0 ] ) −

2∗p [ 1 ] ∗ b∗(1 + p [ 9 ] +

b∗u∗p [ 1 0 ] ) ) /

(p [ 4 ] + 2∗p [ 3 ] ∗ b∗u +

4∗p [ 1 ] ∗ p [ 6 ] ∗ u + 2∗a∗p [ 8 ] ∗ u +

p [ 7 ] ∗ ( 1 + (1 + p [ 5 ] ) ∗ p [ 9 ] ) −
p [ 0 ] ∗ p [ 5 ] ∗

(2 + 3∗p [ 5 ] + 2∗(1 + p [ 5 ] ) ∗ p [ 9 ] ) +

p [ 2 ] ∗ ( 1 + p [ 9 ] −
p [ 5 ] ∗ ( 2 + 3∗p [ 9 ] ) ) ) ) −

atan ((−(p [ 2 ] ∗ b∗
p [ 1 0 ] ) −

2∗p [ 0 ] ∗ p [ 6 ] ∗
p [ 1 0 ] −

p [ 8 ] ∗ p [ 1 0 ] +
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p [3]∗(−2∗b∗(1 + p [ 9 ] ) +

u∗p [ 1 0 ] ) +

2∗p [ 1 ] ∗ b∗(−1 − p [ 9 ] +

b∗u∗p [ 1 0 ] ) +

a∗p [ 6 ]∗ ( 2 ∗ ( 1 + p [ 5 ] ) ∗ ( 1 + p [ 9 ] ) +

b∗u∗p [ 1 0 ] ) ) /

(p [ 4 ] + 2∗p [ 3 ] ∗ b∗u +

4∗p [ 1 ] ∗ p [ 6 ] ∗ u + 2∗a∗p [ 8 ] ∗ u +

p [ 7 ] ∗ ( 1 + (1 + p [ 5 ] ) ∗ p [ 9 ] ) −
p [ 0 ] ∗ p [ 5 ] ∗

(2 + 3∗p [ 5 ] + 2∗(1 + p [ 5 ] ) ∗ p [ 9 ] ) +

p [ 2 ] ∗ ( 1 + p [ 9 ] −
p [ 5 ] ∗ ( 2 + 3∗p [ 9 ] ) ) ) ) +

(2∗a∗ l o g (u + b∗( a + b∗u) +

sq r t ( (1 + p [ 5 ] ) ∗
(1 + p [ 0 ] + 2∗a∗b∗u +

(1 + p [ 5 ] ) ∗ p [ 9 ] ) ) ) ) /

p [ 1 1 ] ) / 2 . ;

r e turn value ;

}

double I_4( double a , double u)

{

// This func t i on computes the f o l l ow ing i n d e f i n i t e i n t e g r a l

// a n a l y t i c a l l y :

// F=\in t du \ as inh ( a / ( (u^2 + 1 )^ (1/2 ) ) ) . This came out o f

// Mathematica .

double p [ 2 ] ; // repeated va lue s ca l cu l a t ed beforehand to

113



// i n c r e a s e speed

p [ 0 ] = sq r t ( 1 . + u∗u ) ;

p [ 1 ] = sq r t ( 1 . + a∗a + u∗u ) ;

double va lue = u∗ as inh ( a/p [ 0 ] ) − atan ( a∗u/p [ 1 ] ) + a∗ l o g (u + p [ 1 ] ) ;

r e turn value ;

}
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Appendix B

Zonal Harmonic Expansion Relations

B.1 Recursion relation for the remote source points

of a solenoid

Beginning with

ψrem
n |z0 =

sin2 (θ(Z))

ρrem

(

ρ(Z)

ρrem

)n

P ′
n−1(cos (θ(Z))), (B.1)

where

ρ(Z) =
√

R2 + (Z − z0)2 (B.2)

and

θ(Z) = arccos

(

Z − z0
ρ(Z)

)

, (B.3)

we set out to prove that

ψrem
n |z0 =

ρrem

n+ 1
· ∂
∂Z

(ψrem
n+1|z0). (B.4)

To do so, we will employ the following identities involving Legendre polynomials [49]:

∂n(cos (θ))

∂Zn
= (−1)(n−1) · (n− 1)!

ρn
· sin2 (θ) · P ′

n(cos (θ)), (B.5)
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and

(2n+ 1) · cos (θ) · P ′
n(cos (θ)) = n · P ′

n+1(cos (θ)) + (n + 1) · P ′
n−1(cos (θ)), (B.6)

as well as the relation
∂

∂Z
(ρn) = n(Z − z0)ρ(n−2). (B.7)

We begin by applying Equation B.5 to ψrem
n+1|z0, converting it into a form with no

explicit Legendre polynomials:

ψrem
n+1|z0 =

1

ρrem

·
(

ρ

ρrem

)(n+1)

· (−1)(n−1)

(n− 1)!
· ρn · ∂

n(cos (θ))

∂Zn
. (B.8)

By applying the product rule in tandem with Equation B.7, we take the derivative of

Equation B.8 with respect to Z:

∂

∂Z

(

ψrem
n+1|z0

)

=
(

1
ρrem

)(n+2)

· (−1)(n−1)

(n−1)!
· ∂

∂Z

[

ρ(2n+1) · ∂
n(cos (θ))

∂Zn

]

=

=
(

1
ρrem

)(n+2)

· (−1)(n−1)

(n−1)!
·
[

(2n+ 1) · (Z − z0) · ρ(2n−1) · ∂
n(cos (θ))

∂Zn
+

+ρ(2n+1) · ∂
(n+1)(cos (θ))

∂Z(n+1)

]

. (B.9)

We now substitute explicit terms for the Legendre polynomials back into Equation

B.9:

∂

∂Z

(

ψrem
n+1|z0

)

=
(

1
ρrem

)(n+2)

·
[

(2n+ 1) · ρn · cos (θ) · sin2 (θ) · P ′
n(cos (θ))−

−n · ρn · sin2 (θ) · P ′
n+1(cos (θ))

]

. (B.10)

Equation B.10 can be simplified by substituting Equation B.6 for P ′
n, leaving us with

∂

∂Z

(

ψrem
n+1|z0

)

=

(

ρ

ρrem

)n

· 1

ρ2
rem

·
[

(n + 1) · sin2 (θ) · P ′
n−1(cos (θ))

]

. (B.11)

Finally, we substitute Equation B.1 into B.11, yielding the recursion relation that we
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set out to find:
∂

∂Z

(

ψrem
n+1|z0

)

=
(n+ 1)

ρrem

· ψrem
n |z0. (B.12)

B.2 Relating the boundary conditions for a solenoid

to the boundary conditions for two rings at its

edges

r

z z(A) (B)

Figure B-1: (A) A 3-dimensional rendering of an axially symmetric solenoid and
(B) the regions of convergence for central zonal harmonic expansion of the z and r-
components of the magnetic field from a source point S. In both images, (Za− z0) =
(z0−Zb) (in other words, the source point is located in the middle of the geometries).

In this section, we show that the central region of convergence for the magnetic

fields of a solenoid is equivalent to the central region of convergence for the magnetic

scalar potential of two rings located at the edges of the solenoid, each with a current

~I related to the surface current of the solenoid by

|~I|
ρcen

= |~k|, (B.13)

and where
~I2
|~I2|

=
~k

|~k| .

We begin by drawing a relationship between the source constants for the geome-

tries depicted in Figures B-1(A) and B-1(B). Recalling the general equation for the
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source constant from a ring (Eq. 4.44),

ψcen
n |z0(Z) =

sin2 (θ(Z))

ρcen

(

ρcen

ρ(Z)

)(n+1)

P ′
n+1(cos (θ(Z))), (B.14)

we can determine the source constants for the solenoid from Equation 4.62 to be

Ψ̃cen
n |z0 = −µ0 · |~k|

2
· ρcen

n
·
[

ψcen
n−1|z0(Zb)− ψcen

n−1|z0(Za)
]

. (B.15)

From Equation 4.44, the source constants for the pair of rings is

Ψcen
n |z0 =

µ0 · |~I|
2
· [ψcen

n |z0(Zb)− ψcen
n |z0(Za)] . (B.16)

Comparing Equations B.15 and B.16, we can immediately see that

Ψcen
n |z0 = −Ψ̃cen

n+1|z0 · (n+ 1). (B.17)

Now that we have a relationship between the source constants of the two ge-

ometries, we can draw comparisons between their formulae for computing the scalar

potential and magnetic fields. From Equation 4.35 BS
z , the z-component of the mag-

netic field for the solenoid, becomes

BS
z =

∞
∑

n=0

Ψ̃cen
n |z0

(

ρ

ρcen

)n

Pn(cos θ) =

= Ψ̃cen
0 |z0 −

∞
∑

n=1

Ψcen
n−1|z0 ·

ρcen

n
·
(

ρ

ρcen

)n

· Pn(cos θ) =

= Ψ̃cen
0 |z0 −

∞
∑

n=0

Ψcen
n |z0 ·

ρcen

(n+ 1)
·
(

ρ

ρcen

)(n+1)

· Pn+1(cos θ). (B.18)

Now, the summation in Equation B.18 is precisely that describing the magnetic scalar

potential for the two-loop configuration, ΨL (from Equation 4.33):

ΨL =
∞
∑

n=0

Ψcen
n |z0 ·

−ρcen

(n + 1)
·
(

ρ

ρcen

)(n+1)

· Pn+1(cos θ). (B.19)
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We can now rewrite Equation B.18 as

BS
z = Ψ̃cen

0 |z0 + ΨL, (B.20)

which, since Ψ̃cen
0 |z0 = 0 from Equation 4.58, clearly has the same convergence region

as the 2-loop system.

Equation 4.36 gives us BS
r , the r-component of the magnetic field for the solenoid:

BS
r = − sin θ

∞
∑

n=1

Ψ̃cen
n |z0

(

1

n + 1

)(

ρ

ρcen

)n

P ′
n(cos θ) =

= sin θ
∞
∑

n=1

Ψcen
n−1|z0

(

ρcen

n(n + 1)

)(

ρ

ρcen

)n

P ′
n(cos θ). (B.21)

Recalling the equation for the scalar potential of the 2-loop configuration, Equation

B.19 can be rewritten as

ΨL =

∞
∑

n=1

Ψcen
n−1|z0

(−ρcen

n

)(

ρ

ρcen

)n

Pn(cos θ). (B.22)

Since ΨL is an analytic function over its region of convergence, we are guaranteed

that the derivative of Equation B.22 with respect to θ must also converge in the same

region. Taking this derivative, we get

∂ΨL

∂θ
= sin θ ·

∞
∑

n=1

Ψcen
n−1|z0

(ρcen

n

)

(

ρ

ρcen

)n

P ′
n(cos θ). (B.23)

By comparing the terms of Equations B.21 and B.23, we can see that every term in

BS
r is smaller than the respective term in ∂ΨL

∂θ
by a factor of

(

1
n+1

)

. We can therefore

state that Equation B.21 is guaranteed to converge in the same region as B.23.
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Appendix C

KatrinField

KatrinField is a toolkit written in C++ for solving electrostatic and magnetostatic

fields by employing the techniques outlined in Chapters 3, 4 and 5. At its inception,

KatrinField was merely a port of the existing algorithms of Dr. Ferenc Glueck

[44] into an object-oriented framework for use in GEANT4 [65] simulations of the

Katrin experiment. It has since been augmented to include refinements of the existing

techniques and new methods for field computation, with the intention of its use as a

more general framework for electrostatic and magnetostatic field computation.

The toolkit is partitioned into the following components:

• Geometry: container classes that hold the various geometry primitives for use

in field calculation,

• Elliptic: routines for directly calculating the electric and magnetic fields using

the methods described in Chapter 3,

• Legendre: routines and container classes for creating, storing and implementing

the central and remote zonal harmonic expansions outlined in Chapter 4,

• FieldMap: routines for the creation and application of field maps described in

Chapter 5,

• Field: a master container class that holds the geometry and field methods, and

classes to control the input and output for the geometry and the parameters of

the individual field methods, and
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• Test: simple programs that demonstrate the utility of the KatrinField toolkit.

With the exception of the test programs, the general properties of each of these

components are described in this chapter (the results of the test programs can be

found in Chapter 6).

In its current form, the KatrinField toolkit is complete: all of the geometry

primitives and field methods described in this thesis are fully implemented. It is

static, however, and additional geometry primitives and field solving methods cannot

be included without altering the existing routines. The next iteration will attempt to

make the toolkit more dynamic, allowing users to easily construct additional geometry

primitives and field solving techniques without affecting the existing routines or the

program structure. In doing so, KatrinField will be applicable to more general tasks

requiring field calculation, making it more valuable to a larger subset of the physics

community.

C.1 Components of KatrinField

C.1.1 Geometry

Geometry primitives

Geometry primitives describe the actual sub-elements which comprise the geometry

of the simulation. The available geometry primitives for use in KatrinField are

described in Table C.1.

Depending on their symmetry properties, primitives are either represented as sin-

gular instances or as collections of identical sub-elements repeated about the z-axis.

For example, a ConicSect describes a single conic section electrode with only one

placement in the system because it is naturally axially symmetric, whereas a Wire

describes a collection of multiply placed wire segments about the azimuthal axis (see

Fig. 4-5 for a graphical representation). Each collective primitive has associated with

it a list of coordinates (like WireCoord, for example) that describes the locations of

each primitive in the collection.
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Geometry Primitive Graphical Description Axially Symmetric Associated Classes

d

�
x

1

2

x

Wire no WireGroup

Wire

WireCoord

b

aP�

n�

n� �

Triangle no TriGroup

Triangle

TriCoord

r

zZ

R
�Ring yes Ring

b

aP�

n�

n�

�
Rectangle no RectGroup

Rectangle

RectCoord

r

z

Conic Section yes ConicSect

r

zZa Zb

�a

�b �Thick Coil yes CoilGroup

Coil

Table C.1: Available geometry primitives.

The description of wires, rectangles and triangles as repeated copies has several

advantages. While individual placements of these primitives would break the axial

symmetry of a system, multiply repeated instances about the azimuthal axis allow

us to partially recover this symmetry. For geometries that have multiply repeated

primitives (such as the wires in Katrin’s main spectrometer [28]), we can approximate

these geometry collections with axially symmetric sub-elements, enabling the use of

the zonal harmonic expansion technique. In addition, we greatly reduce the number of

independent sub-elements for which charge densities must be computed by effectively

reducing the dimensionality of the system. For systems that have no axially symmetric
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approximation, the user can simply treat each instance of these sub-elements as having

only one copy.

Geometry approximations

If a field calculation is sufficiently far from a collection of asymmetric electrode prim-

itives, it is beneficial to approximate the collection with a simpler sub-element. The

example of substituting a Wire with a ConicSect to recover the technique of zonal

harmonic expansion has already been described in Section 4.2.3. Similarly, Wire,

Rectangle and Triangle collections may each be approximated as an axially sym-

metric Ring. The parameters that determine when these approximations hold valid

are compared against the ratio of the size of the sub-element to its distance from

the field point, and also by how many repeated instances of the primitive are in the

collection. When the approximation of an entire electrode collection as a single ax-

isymmetric electrode cannot be used (for example, if the field point is too close to

one of the electrodes in the collection), the remaining electrodes in the collection can

sometimes be approximated as a simple point charge. The point charge approxima-

tion exists for individual Rectangle and Triangle instances when the area of the

sub-element surface is small compared to its distance from the field point. In the cur-

rent iteration of KatrinField, the parameters that determine when to use geometry

approximations are defined by the user.

Geometry groups

To reduce the number of independent electrode sub-elements even further, it is pos-

sible to collect asymmetric primitive collections into groups that have the same po-

tential, and approximate the the charge density across them as equal.1 While this

process effectively reduces the accuracy of the field calculation, it is often necessary

to restrict the number of independent sub-elements present in the system, as the time

cost of computing the charge densities is proportional to the cube of the number of

independent sub-elements [44]. Each primitive group (like WireGroup, for example)

1We are essentially extending the first approximation discussed in Section 3.2.7 to a larger surface.

123



contains a list of the sub-elements that belong to the group, as well as their collective

potential and charge density. If the user does not wish to group electrode primitives

in this manner, each asymmetric electrode can be defined as the sole member of an

electrode group.

Figure C-1: A graphical representation of magnetic coils that share different axes.

Magnetic coils are also collected into groups, where each group of coils shares a

common axis of symmetry. This facilitates the computation of the magnetostatic field

in systems that have tilted coils, like those present in KATRIN’s transport system (see

Fig. C-1) [28]. By separating the coils in this fashion, we can use the zonal harmonic

expansion technique to compute the magnetic field as a superposition of multiple

axisymmetric systems.

Geometry containers

The geometry containers E_Geometry and B_Geometry hold TClonesArrays2 of the

geometry primitives that contribute to the electric and magnetic fields, respectively.

In addition, E_Geometry contains methods for discretizing an electrode into smaller

sub-elements, so that the approximation of constant charge density across a single

sub-element holds valid. There is also a left/right symmetry parameter, which mirrors

the electrode geometry across a plane normal to the z-axis at a specified z-coordinate.

Since certain subsections of the KATRIN experiment contain electrodes that possess

2A TClonesArray is special type of array in ROOT [66] that is optimized to hold repeated
instances of simple objects. It is optimized to increase the speed of data access and to minimize
storage memory.
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this symmetry, the left/right symmetry parameter is merely a means to simplify the

geometry definitions.

C.1.2 Elliptic

The primary utility of the two classes Elliptic_EField and Elliptic_BField is to

loop over all of the geometry primitives and apply the formulae derived in Chapter

3 to directly compute the electric and magnetic field, respectively, as a sum of the

contributions from each primitive. Because it holds the direct calculation methods for

computing the electric potential from each of the electrode types, Elliptic_EField

also contains the method for computing the charge densities on all of the electrodes.

To compute the charge densities, Equation 3.29 is solved via Gaussian elimination

using ROOT’s linear algebra package [66]. Elliptic_EField is also responsible for

creating the additional primitives that can approximate the field produced from more

complex geometry configurations, and holds the parameters that determine when

these approximating primitives are valid.

C.1.3 Legendre

When a geometry is, or can be approximated as, axially symmetric, Legendre_EField

and Legendre_BField_1Group contain the routines for computing and implementing

the zonal harmonic expansion technique described in Chapter 4. Since each coil group

has a different axis of symmetry, Legendre_BField_1Group implements the technique

for only one coil group, while the container class Legendre_BField computes the

aggregate field from all of the coil groups using a combination of the zonal harmonic

expansion and direct calculation techniques. User-defined inputs are used to define

the convergence parameters of the expansions (see Sec. C.1.5).

In order to maximize the utility of the technique, multiple remote and central

source points are used to cover a larger net region of convergence (see Fig. C-2). The

locations of these source points are determined using parameters set by the user. By

default, the locations of the first and last field points are determined by the geometry.
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Figure C-2: A graphical representation of the central regions of convergence for three
source points. Within each region of convergence, the coefficients corresponding to
the nearest source point can be used in an expansion to solve for the fields. By using
multiple source points, the technique of zonal harmonic expansion can be applied in
a larger region of space.

The positions of these source points, their radii of convergence and source constants

are held in the container class SourcePoints.

C.1.4 FieldMap

General structure

Both 2 and 3-dimensional field maps are created using the methods described in Chap-

ter 5. The class FieldMap_dD (where d = 2, 3) contains all of the MetaCube_dD in-

stances that comprise the field map, as well as the routines for construction and imple-

mentation3. Each MetaCube_dD instance in the map contains two ROOT TTrees orga-

nized as linear 2d-trees comprising repeated FieldPoint_dD and InterpolationCube_dD

instances, and searching algorithms for navigating the TTrees. In addition, each

FieldMap_dD instance has a FieldMapHeader that holds persistent parameters de-

scribing the map. Because field maps continuously interact with precisely organized

files, the saving and retrieval of persistent field map data occurs within the individual

MetaCube_dD instances, rather than being controlled by a higher-level class.

3A MetaCube_dD is the class representation of the meta-box described in Section 5.3.3.
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Tree splitting

To prevent individual files in the field map from becoming too large, FieldMap_dD

also contains a method for automatically splitting meta-boxes into smaller meta-boxes

during the creation of the map. This prevents the premature completion of a given

region of the field map due to file size constraints, which would otherwise cause the

field map to have disparate accuracies across the map. The maximum size for an

individual file in the field map is set to 2 GigaBytes, a commonly accepted file size

limit in modern computing.

Parallel computaton

Because the creation of a field map is a very time and CPU-intensive task, FieldMap_dD

has been written with an optional mode that allows users to construct the field map

using parallel computation techniques. KatrinField is currently being designed to

run routines for field map generation on a computer grid, using MPI protocols [64]

to facilitate field map construction that is uniformly distributed across the grid.

C.1.5 Field

The class KatrinField (which shares the name of the toolkit) holds the geometry

containers and field solving methods and is responsible for the high-level function-

ing of the toolkit, such as the initialization and implementation of the geometry and

field-solving classes. The order in which computations are carried out is dictated by

this class to be legendre → fieldmap → elliptic, to ensure that the fastest applicable

method is used for a given field point. The KatrinField class also contains methods

for input and output for the geometry descriptions and the zonal harmonic expan-

sion source points and coefficients, and can compare active geometry configurations

against those saved to file (field map-specific data is handled by the field map classes

themselves).

The class KatrinField also contains a subclass ParameterConfig, which is re-

sponsible for setting the parameters for the components of the toolkit. ParameterConfig
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KatrinField
Parameter Description

Default
component value

Geometry

wireDiscPower determines the distribution of the Wire sizes 2
wireDiscScale # of Wire sub-elements is ∝ scale 4
conicSectDiscPower determines the distribution of conicSect sizes 2
conicSectDiscScale # of conicSect sub-elements is ∝ scale 4
isSymmetric boolean flag for electrode left/right symmetry false
isAxiallySymmetric boolean flag for electrode axial symmetry true
zMirror z-coordinate of the plane of left/right electrode symmetry ∼
(e/b)GeometryVerbose verbose level for geometry (0 to 5) 1

Elliptic

rectGroupToRingApproxParam approximates RectGroup/TriGroup as Ring 0.15
rectCoordToPSApproxParam approximates single Rectangles/Triangles as point sources 40
wireToConicSectApproxParam approximates WireGroup as ConicSect 3
wireGroupToRingApproxParam approximates WireGroup as Ring 0.15

(e/b)EllipticVerbose verbose level for direct ~E/ ~B-field calculation (0 to 5) 1

Legendre

(e/b)FieldProxToSP restricts expansion if field point is close to source point 1.e-12 m
(e/b)FieldConvergenceParam ratio of final term in expansion to total sum of expansion 1.e-15
(e/b)FieldConvergenceRatio ratio of max. radius of convergence relative to ρcen/rem .99
(e/b)FieldDel_z distance between source points along z-axis 0.04 m
(e/b)FieldNRemoteCoeffs # of coefficients used in remote expansion 500
(e/b)FieldNCentralCoeffs # of coefficients used in central expansion 500

(e/b)LegendreVerbose verbose level for zonal harmonic expansion of ~E/ ~B-field (0 to 5) 1

FieldMap

eFieldIsFieldMap boolean flag for using a field map false
eFieldMaxCubeSize size of the highest-level cube in map 0.5 m
eFieldNLevel # of levels in map 5
eFieldTolerance accuracy of the map 1.e-6
eField(X/Y/Z)Min minimum x/y/z-coordinate of map ∼
eField(X/Y/Z)Min maximum x/y/z-coordinate of map ∼
eFieldMapVerbose verbose level for field map (0 to 5) 1

Field fieldVerbose verbose level for main class & I/O routines (0 to 5) 1

Table C.2: Table of available parameters to be set by the user.

operates in a similar fashion to a Messenger class within the GEANT4 framework

[65], and is designed to accept arguments written in the form of a GEANT4 macro.

Table C.2 lists the available parameters that can be set by the user.

C.2 Summary

In its current form, the KatrinField toolkit is capable of taking as input complex ge-

ometries comprised of multiple user-defined geometry primitives, and outputting the

electric and magnetic fields that result from these geometries using the techniques

described in Chapters 3, 4 and 5. By utilizing ROOT’s preexisting routines for opti-

mized input and output of data to persistent memory, the toolkit is able to distinguish

between multiple geometries and reuse previously computed charge densities, source

points and field maps in order to facilitate the repeated testing of geometry config-

urations. The interaction between complementary field-solving methods within the

toolkit produces a unified field calculation method that is faster and more comprehen-
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sive than any singular method. While a subsequent iteration is required to achieve

more flexibility and utility to the greater physics community, KatrinField is cur-

rently well suited for use in many simulations of the electrostatic and magnetostatic

fields present in the KATRIN experiment.
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