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Introduction

To our current knowledge, neutrinos are at the same time the most elusive and most
abundant massive particles in the Universe. Their detection is challenging and pushes
experiments to the edge of technical frontiers. Yet, their understanding might shed light
on long-standing open questions of modern physics: What is dark matter? Do Majorana
particles exist? Why does matter predominate over antimatter? What happened in the
earliest stages of our Universe just after the Big Bang? And in all these regards, the yet
unknown mass of neutrinos is a key physics parameter.

The KArlsruhe TRItium Neutrino (KATRIN) experiment aims to measure the effective
mass of the electron antineutrino with an unprecedented sensitivity of 200 meV (90 % C.L.)
by precision spectroscopy of the endpoint region of the tritium-β-decay spectrum. This
sensitivity is one order of magnitude more constraining than the one of the predecessor
experiments.

In order to provide this sensitivity, KATRIN features i. a. a gaseous tritium source. Its
special characteristics must be well controlled and understood. This thesis focuses on two
selected models concerning electron-scattering in said gaseous source:

¬ The dependence of the cross section for inelastic electron-scattering off hydrogen
isotoplogues on the energy of the incident electrons should be investigated. Former
works primarily used a constant cross section when simulating KATRIN neutrino
mass measurements. An energy-dependent scattering model should be established
and applied within simulated neutrino mass inference.

­ In a commissioning measurement that was conducted in fall 2018, the KATRIN
collaboration has established a preliminary model of the probability density for the
energy an electron loses when scattering in the KATRIN gaseous tritium source.
The aim of this thesis was the implementation of statistical methods that enable
the general treatment of model uncertainties. The methods were then tested in the
context of the preliminary energy loss model in order to assess systematic effects in
neutrino mass inference.

The results are listed in the summary in chapter 7.

Outline

This thesis is structured as follows:

Chapter 1 is a brief introduction to neutrino physics with special emphasis on the measure-
ment of the neutrino mass.

Chapter 2 focuses on the experimental setup of the KATRIN experiment.

Chapter 3 introduces a mathematical model of a KATRIN neutrino mass measurement
that can be used in parameter inference.



Chapter 4 integrates the mathematical model into a statistical framework for neutrino
mass inference.

Chapter 5 investigates a refinement of the mathematical model by incorporating the energy-
dependence of the cross section for inelastic electron scattering in the KATRIN gaseous
tritium source as per item ¬.

Chapter 6 focuses on the treatment of uncertainties from a preliminary model for the energy
loss of electrons scattering inelastically off deuterium molecules as per item ­.

And chapter 7 summarizes the results.
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1. Neutrino Physics

This chapter is an introduction to neutrino physics. The primary aim is to give an
experimentally-rooted definition of a neutrino. Therefore, in section 1.1, selected exper-
imental milestones are outlined that led to today’s description of a neutrino within the
established Standard Model of Particle Physics (SM). In section 1.2, it follows an outline
of the SM and how it relates to the neutrino. Special attention is paid to the neutrino
mass: First, in section 1.3, an extension of the SM that allows for neutrino masses is
summarized. Second, in section 1.4, the phenomenon of neutrino flavor oscillations is intro-
duced. Corresponding experiments proved that neutrinos have mass. Third, in section 1.5,
experiments for an absolute neutrino mass measurement are presented because as such
they relate particularly to the KATRIN experiment.

1.1. Neutrinos until the 1960s

Albeit the neutrino as a hypothetical new particle was not postulated until 1930, its rich
scientific history might be seen as already heralded during the preceding 35 years.

In 1895, Becquerel reported results on experiments with phosphorescent substances, espe-
cially uranium salts, on photographic plates [Bec95]. These experiments mark the discovery
of radioactivity and triggered manifold subsequent investigations.

In 1899, Rutherford published a classification of radioactive decays into α and β types
according to their penetration strength [Rut99].

In 1900, Becquerel determined the mass-charge ratio of β-decay particles [Bec00] and
identified them as the electron previously described by Thomson [Tho97].

In 1914, Chadwick measured a continuous electron energy spectrum in the β decay of
lead-214 and bismuth-214 [Cha14].

In 1927, Ellis and Wooster conducted a calorimetric measurement of the β-decay energy of
radium and demonstrated that the continuity of the β spectrum was intrinsic to the decay
as opposed to be caused by secondary effects [EW27].

In 1930, a β decay was thought of as a two-body decay zA → z+1B + e−. Assuming
conservation of energy and momentum, in a two-body-decay, the momenta of the daughter
particle B and the electron e are solely determined by their masses and the “energy content”,
as Bohr put it, of the parent particle A [Boh32]. According to Bohr, there was no reason to
believe that different nuclei of the same element A should have a different energy content
in a β decay. Hence, the continuous nature of the β spectrum could not be explained. As
a possible solution, Pauli suggested the β decay to be a three-body decay and postulated
an electrically neutral particle that carries part of the decay energy [Pau30].

In 1934, Fermi developed a quantitative theory of β decay that could describe the preceding
experimental results [Fer34]. It comprises a four-fermion contact interaction, respectively a
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three-body-decay model. It was the first description of the so-called “weak interaction”.
Furthermore, Fermi coined the term “neutrino” for the particle postulated by Pauli. Fermi’s
theory inspired the idea to use the “inverse β decay” or “neutrino capture” to detect
neutrinos, which in today’s nomenclature is written as

ν̄e + p+ → n + e+ .

In 1956, Cowan and Reines published results of a corresponding experiment [Cow+56]. It
was conducted using the high neutrino flux of the nuclear reactor of the Savannah River
Plant. The neutrinos originating in the reactor passed a tank of water and cadmium
chloride triggering the above process. The emerging neutron was captured by the cadmium
which emitted a photon in a 3 MeV to 11 MeV range

n+ 113Cd→ 114Cd + γ .

The emerging positron annihilated with an electron which produced two photons of 0.5 MeV
each. A coincidence measurement of the corresponding photons enabled discriminating
signal and background events. Based on their results, Cowan and Reines reported the
discovery of the free neutrino.

In the same year, 1956, Lee and Yang published an article on parity conservation [LY56].
Parity conservation implies that a mirrored physical process behaves the same as its non-
mirrored counterpart. Here, mirroring means a change of sign of the position vector in
the applied physical laws. Lee and Yang pointed out that parity conservation might be
violated in weak interactions and suggested several probing methods.

In 1957, Wu et al. conducted an experiment that employed one of the corresponding probing
methods, based on β decay [Wu+57]. The parity operation, respectively “the mirroring”,
corresponded a change of the magnetic field orientation in the experiment. The results
showed that parity is violated in weak interactions.

In 1958, Goldhaber et al. measured the helicity H of the neutrino [Gol+58]. Helicity is
defined as H = σ̂ · p̂, where σ̂ is the spin unit vector and p̂ is the momentum unit vector
(here: of the neutrino). The experiment found H = −1 which corresponds to maximum
parity violation. In other words, only left-handed neutrinos and right-handed antineutrinos
participate in weak interactions.

In 1962, Danby et al. reported on a second type of neutrinos [Dan+62]. A beam of pions
generated at the Alternating Gradient Synchrotron in Brookhaven decayed according to
π± → µ±+

(–)

ν . The emerging neutrinos penetrated a 13.5-meter iron shield wall and their
interactions were detected in a 10-t aluminum spark chamber. The observed interactions
were path-like as opposed to shower-like, which implied the production of muons as opposed
to electrons. This was marked as the discovery of the muon neutrino.

The attempts to uniformly describe the manifold discoveries in the field of particle physics
in a combined theory converged over the course of the second half of the 20th century into
what is known today as the Standard Model of Particle Physics.

1.2. Neutrinos in the Standard Model of Particle Physics

This section introduces the basic concepts of the Standard Model of Particle Physics (SM)
in a condensed manner. It describes general particle properties in section 1.2.1 and relates
them to neutrinos in section 1.2.2.

The SM is a gauge quantum field theory exhibiting the gauge symmetry SU(3)×SU(2)×U(1).
As such, it can be formulated using the principle of least action and a Lagrangian density
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L depending on fields and their derivatives [Zee03]. Albeit it can not account for all
known subatomic phenomena, within its known boundaries, the SM is a well-tested and
established theory, which is evident by e. g. the extensive review of particle properties of
the Particle Data Group [Tan+18].

1.2.1. General Particle Properties
The gap between fields and particles can be bridged as follows: If “[i]n region 1 in spacetime
there exists a source that sends out a ‘disturbance in the field’, which is later absorbed by
a sink in region 2 in spacetime[,] experimentalists choose to call this a particle” [Zee03].
Intrinsic particle properties can be derived from the relation of their associated fields
to the Lagrangian density. For example, a particle’s mass is encoded by the Yukawa
coupling of its field to the higgs doublet through the higgs mechanism and spontaneous
symmetry breaking [Hig64]. A further intrinsic property is a particle’s spin, that takes
half-integer values in units of ~ for fermions or integer values for bosons. A particle’s
flavor is its eigenstate with respect to the weak interaction, which is described by the
SU(2)×U(1) subgroup (Glashow-Weinberg-Salam model [Gla61; Wei67; Sal68]). According
to Noether’s theorem, each symmetry conserves an associated charge [Noe18]. In the case of
the SU(2)×U(1) symmetry, the associated charges are called isospin T = (T1, T2, T3)T and
hypercharge Y . A derivative of these charges is the electric charge Q = T3 + 1

2Y [Sch19].
In that sense, each particle has an associated antiparticle that carries the opposite electric
charge. As mentioned in the historical overview (section 1.1), a theory consistent with
experiment must violate parity. Such theories are called chiral [Zee03]. The SM is a
chiral theory and thus its fermion fields can be decomposed in left- and right handed
components [Sch19].
Figure 1.1 depicts the particles of the SM along with their selected properties mass and
electric charge. It also shows a further categorization among the fermions into quarks and
leptons.

1.2.2. Neutrino Properties
With reference to the particle properties listed in the previous section 1.2.1, a neutrino
can be described as follows: A neutrino carries a spin of 1/2~. Thus, it is a fermion. It
is categorized as a lepton. It has an electric charge of 0. And there are only left-handed
neutrinos and right-handed antineutrinos [Sch19].
The mass of a neutrino will be discussed separately within the following chapters.
Neutrinos come in three flavors, typically denoted as νe, νµ and ντ. Some additional
remarks about the neutrino flavors can be made: First, the historical overview (section 1.1)
mentions the discovery of the electron and muon flavor, but it was not until 2001 that the
tau neutrino was discovered by the DONUT collaboration [Kod+01]. Second, a precision
measurement of the width of the Z0-boson resonance ΓZ = (2.68± 0.15) GeV at the Large
Electron Positron Collider (LEP) in the 1990s yielded a number of active light neutrino
flavors consistent with three. In this context, “light” refers to a neutrino mass smaller than
half the mass MZ = (91.174± 0.070) GeV of the Z0-boson [Acc+98]. (It should be noted
that this refers to active neutrino flavors. Sterile neutrinos as an extension of the SM are
not ruled out [OW08].)

1.3. Mechanisms that Generate Neutrino Masses
The subsequent section 1.4 lists experiments which proof that neutrinos have mass. However,
in the SM, as described in section 1.2, the neutrino masses are assumed to be zero.
Nevertheless, an extension of the SM is possible. The corresponding mass terms are
introduced in section 1.3.1. Moreover, the neutrino-mass formalism entails neutrino flavor
mixing as described in section 1.3.2.
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Figure 1.1.: The Standard Model of Particle Physics. The diagram illustrates
possible categorizations of particles within the SM. The fermions are framed with
continuous and the bosons with dotted lines. Among the fermions the quark sector is
marked by a thick frame and the lepton sector by a thin one. The first three columns
show the fermions; and the fourth and the fifth the bosons. While the bosons in the
fourth column carry a spin of 1, the higgs boson, that is depicted in the fifth column and
marked with a thicker frame, carries a spin of 0. Also, the particle mass in natural units is
shown and the electric charge in units of the absolute electron charge. All quantities along
with uncertainties can be found in the Review of Particle Physics [Tan+18]. (Illustration
adapted from [Sei19].)

1.3.1. Neutrino Mass Terms

For a theory to account for neutrino masses, its Lagrangian density must exhibit corre-
sponding mass terms. According to [Zub11], the formalism can be summarized: The form
of a mass term is given by the Dirac equation, which is produced by applying the principle
of least action to a suitable Lagrangian density L. The mass terms have to be quadratic
in the fermion fields ψ and must leave the Lagrangian density hermitian. Furthermore, a
field ψ must have a left- and right-handed component in order for the mass terms not to
vanish. Two possible term forms are named after Dirac and Majorana. Whether one or a
mixture of both forms corresponds to the neutrino’s reality is an open question.

Dirac Masses

A Dirac mass term with mass mD split in its chiral components (Weyl spinors) ψL,R has
the form [Zub11]

LD = −mDψ̄ψ = −mD

(
ψ̄LψR + ψ̄RψL

)
. (1.1)

Applying this to neutrinos requires both a left- and a right-handed Dirac neutrino. Right-
handed neutrinos have not yet been observed. If they exist, they do not interact weakly
and hence are called sterile.
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Majorana Masses

For Majorana mass terms the CP-conjugate ψC of a fermion spinor ψ is used. It should
be noted, that if ψ is left-handed, ψC is right-handed and vice versa. Then, a Majorana
field φ can be defined and a corresponding mass term LM with a mass mM can be
constructed [Zub11]:

φ = ψ + ψC LM = −1
2mM φ̄φ . (1.2)

As φC = φ, the described Majorana particle is its own antiparticle, which, due to charge
conservation, is only possible for neutral particles, such as a neutrino.

1.3.2. Neutrino Mixing

If neutrinos have mass, their mass eigenstates |νi〉 (i ∈ {1, 2, 3}) of the free Hamiltonian need
not be identical to their flavor eigenstates |να〉 (α ∈ {e,µ, τ}) of the weak interaction [Zub11].
In case they differ, there must be a basis-change matrix. Such a matrix was introduced
by Maki, Nakagawa and Sakata in order to explain the so-called neutrino oscillations (see
section 1.4) predicted by Pontecorvo [Pon58; MNS62]. Therefore, the matrix U for a basis
change is called Pontecorvo-Maki-Nakagawa-Sakata matrix (PMNS matrix)

|να〉 =
∑
i

Uαi |νi〉 . (1.3)

As a complex unitary matrix, U can be expressed by six parameters. A possible choice
are three angles θ12, θ23, θ13 ∈ [0, 2π), a phase δ ∈ [0, 2π) and two Majorana phases
α, β ∈ [0, 2π):

U =

1 0 0
0 cos θ23 sin θ23
0 − sin θ23 cos θ23


 cos θ13 0 sin θ13e

−iδ

0 1 0
− sin θ13e

iδ 0 cos θ13

 (1.4)

 cos θ12 sin θ12 0
− sin θ12 cos θ12 0

0 0 1


1 0 0

0 eiα 0
0 0 eiβ

 .

These parameters are called neutrino mixing parameters. It should be noted, that δ is also
called “CP -violating” phase. Here, P stands for parity conjugation as it was explained in
section 1.1; and C for electric charge conjugation that follows the same idea with a sign
change of the electric charge instead of the position vector. Why δ 6= 0 implies CP -violation
is shown in section 1.4.1.

One of the consequences of neutrino mixing, namely neutrino oscillations, is explained in
the following section 1.4.

1.4. Neutrino Oscillations

The term “neutrino oscillations” refers to the neutrino’s change of flavor after passing
a certain propagation distance. In other words, neutrinos might be detected in another
flavor than the one they originated in. Section 1.4.1 introduces a demonstrative formalism
that aims at showing the link between oscillations and the masses of neutrinos. Neutrino
oscillations also depend on the neutrino mixing parameters introduced in section 1.3.2.
The accessibility of these mixing parameters and neutrino masses via neutrino oscillation
experiments will be evaluated in section 1.4.4. Neutrino oscillation experiments are
manifold. As an exemplary case study the so-called “solar neutrino problem” is discussed in
section 1.4.3. Finally, the experimental results on neutrino oscillations will be summarized
in section 1.4.4.
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1.4.1. Relation to Neutrino Masses

According to [Zub11], a formula demonstrating neutrino oscillations can be derived: Using
the PMNS matrix U from equation (1.4), the evolution of a neutrino’s flavor eigenstate on
a one-dimensional path starting at position x = 0 at time t = 0 with momentum pi and
energy Ei of its mass eigenstates |νi〉 is

|να(x, t)〉 =
∑
i

Uαie
−i(Eit−pix) |νi〉 . (1.5)

This leads to the transition amplitudes

A(α→ β)(t) = 〈νβ|να(x)〉 =
∑
i

U∗βiUαie−i(Eit−pix)t (1.6a)

A(ᾱ→ β̄)(t) = 〈ν̄β|ν̄α(x)〉 =
∑
i

UβiU
∗
αie−i(Eit−pix)t . (1.6b)

It should be noted that if U 6= U∗ (eq. 1.6) implies CP -violation. In reference to section 1.3.1,
it holds U 6= U∗ ⇔ δ 6= 0, justifying that δ is called CP -violating phase.

The following assumptions allow for a simple and demonstrative form of the transition
probability:

• The neutrinos are relativistic:

◦ Their momentum equals approximately their energy which is by far larger than
their mass pi ≈ Ei � mi. This also implies that the energy can be expanded in
the mass-momentum-ratio mi/pi.

◦ They travel the distance x = L = ct at the speed of light c.

• All neutrino generations have approximately the same momentum E ≈ p ≈ pi.

• The CP -violating phase vanishes: δ = 0. (This assumption is not necessary, but
simplifies the expression for the transition probability. See [Zub11] for δ 6= 0.)

Then, the transition probability from one flavor α to another β in dependence of the
neutrino masses and mixing parameters is

P (α→ β)(L) = |〈νβ|να(L)〉|2

= δαβ − 4
∑
i

∑
j>i

UαiUαjUβiUβj sin2
(

(m2
i −m2

j )
4

L

E

)
.

(1.7)

Equation (1.7) shows oscillatory behavior if two conditions are fulfilled. First, the mass
eigenvalue of at least two mass eigenstates must differ. Second, the product of the PMNS
matrix elements in the corresponding summand must not be zero. In other words, neutrino
oscillations require at least one neutrino type to have mass and to undergo flavor mixing.
Furthermore, neutrino oscillation experiments are sensitive to the difference of squared
masses

∆m2
ij = |m2

i −m2
j | , (1.8)

which only yields two independent observables for three masses. Thus, these experiments
cannot be used to determine the absolute mass scale of neutrinos.
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1.4.2. Experimental Considerations

According to equation (1.7), the ratio L/E determines the sensitivity of an experiment to
the oscillation parameters given by the PMNS matrix U (mixing parameters) and ∆m2

ij

(mass ordering). L can be tuned by placing the detector in a suitable distance from a
Earth-based neutrino source. E can either be tuned by using e. g. particle accelerators as
source or it varies naturally, for instance if the source exhibits an energy spectrum like the
Sun.

Furthermore, two detection channels can be distinguished. If, on one hand, an experiment
is only sensitive to the neutrino flavor which is emitted by the neutrino source, it can detect
a weakening of the neutrino flux. This is referred to as disappearance channel. If, on the
other hand, an experiment is sensitive to a different neutrino flavor than the one which the
neutrino source emits, this is referred to as appearance channel [Zub11].

There are four major classes of neutrino sources that can be used to measure the mixing
parameters and the mass ordering. They are listed in table 1.1. For each class, multiple
experiments exist [Zub11]. Not all experiments will be discussed here. Instead, the following
section 1.4.3 discusses the so-called “solar neutrino problem” as an exemplary case study
on solar neutrino experiments.

1.4.3. Experimental Case Study: The Solar Neutrino Problem

The term “Solar Neutrino Problem” refers to the mismatch of the total neutrino flux arriving
on Earth as predicted by the standard solar model (SSM) and measured by, first, the
Homestake and, later, other experiments. In this section, the problem is briefly described
and its resolution developed.

At the end of the 1930s, Bethe, von Weizsäcker and Critchfield showed that there are two
main fusion cycles in the Sun, the so-called CNO and pp cycle. The latter is the primary
source of solar neutrinos [Wei38; BC38; Bet39]. Its multi-step reaction can be summarized
as [Zub11]

4 p→ 4He2+ + 2 e+ + 2νe + 26.73 MeV . (1.9)

Its initial reaction and the one with the broadest neutrino energy spectrum (from below
0.1 to ∼ 11 MeV [Tan+18]) are

p + p→ 2D + e+ + νe
8B→ 8Be∗ + e+ + νe . (1.10)

It should be noted, that only electron neutrinos are produced in the Sun. Starting from
the 1970s, the solar electron neutrino flux was measured; the first time by the Homestake

Table 1.1.: Neutrino source classes for neutrino oscillation experiments. Dif-
ferent neutrino source classes are listed and which neutrino flavors they emit [Zub11].
Furthermore, the oscillation parameters they are mainly sensitive to are tabulated along
with an example experiment.

source class flavors sensitive to example experiment
nuclear power plants ν̄e sin θ13 Double Chooz [Abe+16]

accelerators νe, νµ, ν̄e, ν̄µ
sin θ12, sin θ23,
∆m2

12, ∆m2
23

MiniBooNE [Agu+09]

atmosphere νe, νµ, ν̄e, ν̄µ sin θ23, ∆m2
23 Super-KamiokaNDE [Fuk+98]

the Sun νe sin θ12, ∆m2
21 SNO [Aha+13]
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experiment using the inverse beta decay of 37Cl. It could detect electron neutrinos with
an energy threshold of 813 keV. The measured flux was one third of the prediction by the
SSM [Cle+98; BPB01]. This is marked as the beginning of the solar neutrino problem.
The experiments GALLEX/GNO and SAGE confirmed the results, where the latter could
detect electron neutrinos with an energy threshold of 233 keV [Kir98; Alt+05; Abd+09].
The low energy threshold is of importance because the neutrinos emitted by the initial
reaction of the pp cycle (eq. 1.10) exhibit the highest flux, but at the same time an energy
spectrum that ends at approximately 400 keV [Bah96].

Starting from 1999, the SNO experiment measured the neutrino flux of all flavors. It used
1000 t of heavy water D2O to detect electron neutrinos via charged currents as well as all
flavors via neutral currents and elastic neutrino-electron scattering. In order to fully explain
the flux data, the so-called Mikheyev-Smirnov-Wolfenstein effect (MSW effect) had to be
respected [Wol78; MS86]: Electron neutrinos can undergo charged current interactions
with surrounding electrons in a coherent forward scattering process, which alters the flavor
transition amplitude. This effect is only significant in areas of high electron densities, such
as the Sun. Taking these matter-mediated oscillations into account, the measured flux of
all flavors of the 8B neutrinos (eq. 1.10) was in accordance with the electron neutrino flux
predicted by the SSM [Aha+13]. Thus, the solar neutrino problem was resolved after more
than three decades.

1.4.4. Summary of Experimental Results

This section summarizes the results obtained from neutrino oscillation experiments. The
neutrino oscillation parameters consist of the squared neutrino mass differences (eq. 1.8)
and the mixing parameters of the PMNS matrix (eq. 1.4). It should be noted first, that the
MSW resonance of solar neutrinos requires m1 < m2, which still allows for two possible
mass orderings [Zub11]:

1. normal ordering m1 < m2 < m3 and

2. inverted ordering m3 < m1 < m2.

For these two cases, a combination of recent experimental results for the neutrino oscillation
parameters is given in table 1.2 and illustrated in figure 1.2. All in all, neutrino oscillations
are experimentally verified and provide unequivocal proof that neutrinos have mass.

1.5. Absolute Neutrino Mass Measurements

The absolute masses of neutrinos remain unknown and, as shown in section 1.4.1, neutrino
oscillations are only sensitive to squared mass differences. This section presents methods to
probe the absolute neutrino mass. The corresponding measurements fall into one of three
categories [OW08]:

• observational cosmology (section 1.5.1),

• search for neutrinoless double β decay (section 1.5.2) or

• kinematic measurements of weak decays such as β decay and electron capture (sec-
tion 1.5.3).

1.5.1. Observational Cosmology

In the early Universe, neutral particles such as light neutrinos could escape from areas
of high mass density to areas of low mass density. As they carry away mass, the larger
the neutrino mass, the stronger is the suppression of density fluctuations on small scales.
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Figure 1.2.: Neutrino mixing parameters and mass ordering. The chart shows
how the mass eigenstates νi are composed of the flavor eigenstates να in the normal and
inverted mass ordering. The composition depends on the phase δ. The mixing is shown
for the two extreme cases δ = 0◦ (baseline) and δ = 180◦ (topline). (Adapted from [Sei19].
Numerical values can be found in [Est+19] and table 1.2)

Corresponding data are obtained, for example, by the Sloan Digital Sky Survey (SDSS).
This survey records the sky’s optical and infrared spectrum via telescope in order to map
the large scale distribution of galaxies and galaxy clusters [Dor+04]. Furthermore, the
temperature anisotropies in the cosmic microwave background (CMB) encode information
on the Universe’s structure. The latest and most precise data are recorded by the Planck
satellite [Agh+18]. Under the assumption that all mass states contribute with the same
number density, cosmological observations are to first order only sensitive to the sum of all
neutrino masses

∑
imi. A combination of the above data sets yields [Yèc+17]∑

i

mi < 0.14 eV (95 % C.L.) .
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Table 1.2.: Overview of neutrino oscillation parameters. The table lists the ob-
servables and their best fit values along with the 1σ-uncertainty range for normal and
inverted ordering. (From [Est+19].)

observable normal ordering inverted ordering
sin θ13 0.310+0.013

−0.012 0.310+0.013
−0.012

sin θ23 0.580+0.017
−0.021 0.584+0.016

−0.020

sin θ13 0.02241+0.00065
−0.00065 0.02264+0.00066

−0.00066

δ/◦ 215+40
−29 248+27

−29
∆m2

21
10−5 eV2 7.39+0.21

−0.20 7.39+0.21
−0.20

∆m2
31

10−3 eV2 +2.525+0.033
−0.032

∆m2
32

10−3 eV2 −2.512+0.034
−0.032

1.5.2. Search for Neutrinoless Double-β Decay

Double-β decay (2νββ) is described as a nucleus of element X(Z,A) with Z protons and
A − Z neutrons that decays to a daughter isotope Y(Z + 2, A) via two simultaneous β

decays
X(Z,A)→ Y(Z + 2, A) + 2e− + 2ν̄e . (1.11)

If the neutrino is its own antiparticle, respectively of Majorana type, the neutrino emitted in
the first decay can be absorbed in the second decay resulting in a neutrinoless double decay
(0νββ). This would require the neutrino to have mass. Such a decay would manifest itself in
a peak in the β spectrum two neutrino masses above the endpoint of the continuum [Zub11].
It should be noted, that this would violate lepton number conservation. The half-life of
such a decay encodes the Majorana mass of the electron neutrino as a coherent sum of all
neutrino masses using the PMNS matrix U (eq. 1.4)

m2
ββ = |

∑
i

U2
eimi|2 . (1.12)

As U contains two unknown Majorana phases, partial cancellation might occur. Hence, it
is difficult to compare mββ to masses obtained by other methods. The two most stringent
upper limits on mββ are listed in table 1.3.

1.5.3. Kinematic Measurements of Weak Decays

Several laboratory experiments as well as the supernova event 1987A have provided upper
limits of absolute neutrino masses from the analysis of kinematics of weak interactions
involving neutrinos or neutrino time-of-flight considerations. Such experiments can not

Table 1.3.: Constrains on the neutrino mass by double-β decay experiments.
The two most stringent limits on mββ (eq. 1.12) are given as ranges.

experiment isotope upper limit (90 % C.L.) on mββ (eV)
GERDA [Ago+18] 76Ge 0.12–0.26
KamLAND-Zen [Gan+16] 136Xe 0.05–0.16
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Figure 1.3.: Feynman graph of neutrinoless double-β decay. The graph depicts
the simultaneous transformation of two neutrons into two protons where the down quarks
transform into up quarks, whilst two electrons and two neutrinos are produced. The two
emitted neutrinos annihilate in a Majorana transition.

Table 1.4.: Constraints on the neutrino mass by kinematic measurements. The
table lists upper limits on the absolute neutrino masses for different neutrino flavors.

flavor measurement basis upper limit reference
νe neutrinos from Supernova 1987A 5.7 eV (95 % C.I.) [LL02]
νµ muon decay 17 keV (90 % C.L.) [Ass+96]
ντ tau decay 18.2 MeV (95 % C.L.) [Bar+98]

ν̄e tritium-β decay 2 eV (95 % C.L.) [Kra+05], [Ase+11],
[Tan+18]

resolve the mass splitting between the squared mass eigenvalues. Therefore, the corre-
sponding observable is an effective mass, respectively a weighted sum of the N neutrino
eigenmasses, where the weights are the elements of the PMNS matrix (eq. 1.4) [OW08]

m2
να =

N∑
i

|Uαi|2m2
i . (1.13)

In the scope of this thesis, the measurement of the mass of the electron antineutrino via
β−-decay kinematics is of special interest. Hence, this subject is examined more closely
within this section. For completeness, aside from the upper limit on the effective mass of
the electron antineutrino, table 1.4 also lists upper limits for other neutrino flavors obtained
by kinematic measurements.

Neutrino Masses from β-decay Kinematics

In β− decay
X(Z,A)→ Y(Z + 1, A) + e− + ν̄e (1.14)

part of the released surplus energy generates the neutrino’s mass. This leaves a signature
in the β spectrum (see section 3.1 for a quantitative description). In a neutrino mass
experiment four criteria are important for a suitable β emitter [OW08]:

• The β emitter should have an energy spectrum with a relatively low endpoint because
in the uncertainty on the neutrino mass enter the input uncertainties of the neutrino
energy and momentum scaled up with the endpoint energy.

• The β emitter must have a sufficiently high activity to provide statistically relevant
count rates for quantities of the β emitter that can be handled in the laboratory.

• The β decay should be super-allowed in order for the nuclear matrix element of the
decay process to be energy independent.
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• The β-emitter molecule should be as simple as possible to allow for a theoretical
treatment of its decay kinematics such as the energy state of the daughter molecule
after the decay.

Tritium is an ideal candidate with respect to these criteria [OW08]. The corresponding
measurement principle will be explained more closely in the following chapters about the
KATRIN experiment. However, KATRIN has several predecessor experiments. The most
recent two experiments based on tritium-β decay in Mainz and Troitsk obtained a combined
upper limit on the electron antineutrino mass of [Kra+05; Ase+11; Tan+18]

mν̄e < 2 eV (95 % C.L.) .

It should be noted, that KATRIN aims for a sensitivity that is better by one order of
magnitude.



2. The KATRIN Experiment

The KArlsruhe TRItium Neutrino (KATRIN) experiment performs a kinematic measure-
ment of the tritium-β spectrum in order to determine the effective mass of the electron
antineutrino (from here forth labeled mν and called neutrino mass) as defined by equa-
tion (1.13). In case no neutrino mass signal is observed, KATRIN aims to set an upper
limit of

mν < 200 meV (90 % C.L.) ,

which is one order of magnitude more constraining than the one set by its predecessor
experiments. KATRIN recorded the first β spectrum in a commissioning run in May 2018
and started neutrino mass measurements in March 2019.

This chapter provides an overview of the KATRIN apparatus. However, given KATRIN’s
complexity, it can by no means be exhaustive and for a comprehensive treatment the
reader is referred to the KATRIN Design Report [KAT05] supplemented by an up-to-date
hardware overview that is in the making at the time of writing this thesis1.

2.1. Overview of the KATRIN Experimental Setup

The KATRIN experiment comprises a 70-m-long beam line depicted in figure 2.1. It can
be divided into two sections:

1. The source and transport section (STS) comprises i. a. the gaseous tritium
source where the tritium decays and the β electrons are magnetically guided along
the beam line. Furthermore, the gas flow from the tritium source to the exit of the
STS is reduced by at least 14 orders of magnitude.

2. In the spectrometer and detector section (SDS) the β electrons are filtered
according to their kinetic energy and finally counted at the detector.

A central concept of the KATRIN setup is the magnetic flux tube. The β electrons must
be guided from their point of origin to the detector. Therefore, a magnetic field is created
by superconducting solenoids surrounding the beam line in the STS as well as coils around,
and superconducting solenoids before and after the spectrometer tank in the SDS. The field
lines intersperse the beam line over the range of the whole experiment. The volume that is
mapped onto the detector by this mechanism is called the flux tube. Within the flux tube,
charged particles perform cyclotron motions around the field lines and are adiabatically
guided from the STS to the detector. Adiabaticity is guaranteed by avoiding strongly
varying field strengths on short distances.

A further central concept of KATRIN is the windowless source. As β electrons must
not lose energy before energy analysis takes place, the SDS is windowlessly connected to
the STS. However, the spectrometer must be kept practically free of any tritium flow

1K. Altenmüller et al. (KATRIN collaboration), in prep.

13
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source and transport section spectrometer and detector section

a b c d e f g

Figure 2.1.: The KATRIN beamline. Shown are the main hardware components:
a) rear section (see section 2.3)
b) windowless gaseous tritium source (WGTS) (see section 2.2)
c) differential pumping section (DPS) (see section 2.4)
d) cryogenic pumping section (CPS) (see section 2.5)
e) pre spectrometer (see section 2.6)
f) main spectrometer (see section 2.6)
g) detector section (see section 2.7)

for safety reasons and to keep the strict background requirements. Therefore, pumping
systems reduce the gas inlet pressure of 1.8mbarl/s to the tritium partial pressure of below
10−14 mbarl/s of the spectrometer.

The following sections step through the various components along the KATRIN beam line
describing their functionality and purpose.

2.2. Windowless Gaseous Tritium Source

The windowless gaseous tritium source (WGTS) is a 16-m-long, 1.5-m-wide and 4-m-high
cryostat. It is depicted in figure 2.2 and a detailed description can e. g. be found in [Gro+08;
Bab+12]. In the following, the major features of the WGTS are reviewed:

Tritium purity: The molecular tritium (T2) is injected in the middle of the 10-m-long
beam tube of 90 mm diameter, where it decays. The design gas column density is ρd =
5× 1017 molecules/cm2 with an isotropic tritium purity of εT = 95 % [KAT05] or better.
At the front and rear of the WGTS, the gas is extracted from the beam tube by turbo
molecular pumps in designated differential pumping sections called DPS-1-R (rear) and
DPS-1-F (front). The extracted gas is re-injected in the center of the beam tube. The
respective circulation system is called the inner loop [PSB15]. The tritium purity εT must
be kept stable on a 0.1 % level [KAT05]. Therefore, a permeator is installed that separates
impurities (like e. g. helium) and ejects them into the exhaust loop of the Tritium Laboratory
Karlsruhe (TLK). Furthermore, the isotopic composition of the gas is monitored by a
designated laser Raman system (LARA) [Sch13].

Injection pressure: The design injection pressure of the tritium gas is 1.8mbarl/s. It
must be kept stable at the 0.1 % level. This is achieved via a pressure- and temperature-
controlled buffer vessel within the inner loop [PSB15].

Magnetic field: In order to adiabatically guide the β electrons to the spectrometer section,
the WGTS is pervaded by a magnetic field parallel to its beam tube axis of up to 5.6 T. It
is created by seven superconducting coils, that surround the beam tube. These magnets
are kept at a temperature of 4.2 K by liquid helium [Are+18b].

Temperature: On the one hand, thermal motion smears the energy spectrum of the
β electrons (Doppler effect). On the other hand, at low temperatures, the gas molecules
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Figure 2.2.: The windowless gaseous tritium source (WGTS). The hull and a
sketch of the beam tube are shown. Indicated are the 8 turbo molecular pumps (TMP),
the 7 magnets, the design temperatures for tritium operation, the maximum magnetic
field strengths and a gradient within the beam tube depicting the decreasing gas density
from the center to the sides. (Adapted from [Har15].)

start to cluster. T = 30 K is chosen as a compromise and established by a two-phase neon
cooling system. For calibration purposes, it is also possible to operate the WGTS with
krypton-83m instead of tritium. This requires a beam tube temperature of T = 100 K in
order for the krypton not to freeze. In this operational mode, the neon has to be exchanged
for argon [KAT05].

2.3. Rear Section

The rear section (RS) terminates the beam line in the upstream direction and houses
monitoring, calibration and control devices. It is depicted in figure 2.3 and a detailed
description can e. g. be found in [Bab14]. The major features of the RS are reviewed in the
following:

Electron gun: The RS houses an electron gun in order to measure the response function of
the experiment (see section 3.2) via a electron source with a well-defined energy resolution
of ∼ 0.2 eV and angular resolution of ∼ 4◦. The electrons are guided towards and through
the rear wall by a designated electromagnetic guidance system. Furthermore, their flight
path can be adjusted by dipole magnets mounted in the WGTS which enable a scanning of
the full flux tube [Bab14].

Rear wall and plasma control: The so-called rear wall is a gold-coated stainless-steel
disc with a diameter of 6 inches that terminates the beam tube. It has a hole in the center to
let electrons from the electron gun pass through. Its main purpose is the control of plasma
effects: Space charges, respectively a plasma, forms within the WGTS due to the tritium
decay. Therefore, β electrons may start at different potentials which adds uncertainty to the
measured β spectrum. Simulations show that the plasma can be influenced by the rear wall
potential, which can be controlled via a voltage supply in the range of ±10 V. Moreover, a
UV light illumination of the rear wall can provide a large flux of electrons, extracted via the
photoelectric effect, that can compensate space charges. Therefore, a homogeneous work
function of the rear wall with fluctuations less than 20 meV is required [Kuc+18; Kuc16].

Activity monitoring: A super conducting coil designed to create a magnetic field of 4.7 T
in the RS ensures that the magnetic flux tube terminates at the rear wall. Hence, per design
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Figure 2.3.: The rear section (RS) terminates the KATRIN beam line and houses
several monitoring and calibration devices that are described in the main text. (Adapted
from [Sei19].)

of the magnetic guidance, β electrons either arrive at the detector or hit the rear wall.
On hitting the rear wall, they emit bremsstrahlung. Two designated beta-induced X-ray
spectroscopy (BIXS) systems measure the corresponding X-ray spectrum to determine the
source strength respectively the gas column density [Röl15].

2.4. Differential Pumping Section
The differential pumping section (DPS) is composed of five elements. It is depicted in
figure 2.4 and a detailed description can e. g. be found in [Kos12]. For orientation, in this
section, the elements are labeled 1 to 5 from WGTS to cryogenic pumping section (CPS).
The major features of the differential pumping section (DPS) are reviewed in the following:

Reduction of tritium flow: The five beam tube elements of the differential pumping
section (DPS) form a 20◦ angle to each other and are arranged in a chicane. β electrons
are magnetically guided along the chicane by a magnetic field of up to 5.5 T created by
five superconducting solenoids. By contrast, the neutral gas molecules scatter off the walls.
This reduces the molecular beaming effect and enhances the pumping probability [ZJH12].
Four turbo molecular pumps mounted between the beam tube elements then reduce the
gas flow by approximately five orders of magnitude and feed the gas into the so-called outer
loop where it is reprocessed [Kos12].

Ion blocking: In the WGTS, ions such as HeT+, T2
+, T3

+, T5
+ can form. If they were

not blocked, they would reach the spectrometer section together with the β electrons and
would be even accelerated by the retarding voltage (see section 2.6). This would eventually
lead to an increased background rate. A potential barrier created by two ring electrodes in
element 5 and the pump port between DPS and CPS set to +100 V avoids such a scenario.
The positive ions are deflected, and dipole electrodes in the elements 1 to 4 make them
drift out of the flux tube. They hit the wall and get neutralized [Klein19].

Ion monitoring: Downstream of the blocking electrodes, the remaining ion flux is measured
by a Fourier transform ion cyclotron resonance device (FT-ICR) [Ubi+09].

2.5. Cryogenic Pumping Section
The cryogenic pumping section (CPS) is an approximately 7-m-long cryostat. It is depicted
in figure 2.5 and a detailed description can e. g. be found in [Jan15]. For orientation, in this
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Figure 2.4.: The differential pumping section (DPS) reduces the gas flow by five
orders of magnitude and blocks tritium ions. Its five elements, each with a separate
magnet (M1-M5), and connected by pump ports, are shown. The outer loop connects the
turbo molecular pumps to the infrastructure of the TLK. (Adapted from [Sei19].)

section, its seven elements are labeled by 1 to 7 from WGTS to CPS. The major features
of the CPS are reviewed in the following:

Reduction of tritium flow: The CPS consists of seven beam tube elements, of which
the first five are arranged in a chicane forming 15◦ angles, in a similar manner as the beam
tube elements of the DPS. Charged particles are guided along the chicane by a magnetic
field of up to 5.6 T created by seven superconducting coils. Neutral molecules hit the walls,
that are covered by a frozen argon layer cooled down to 3 K in order to cold-trap particles.
These low temperatures are achieved via liquid helium cooling and a heat shield of liquid
neon. After the accumulation of about 1 Ci of tritium, the argon frost layer has to be
renewed. In order to achieve this, the beam tube is warmed up and the argon is pumped
off along with the accumulated tritium. Tests and simulations show a reduction of the
tritium flow by approximately 10 orders of magnitude from the entrance to the exit of the
CPS [Jan15; Röt19].

The forward beam monitor (FBM): The FBM can be moved horizontally into the
pump port between beam tube element 6 and 7 of the CPS with a 2-dimensional spatial
resolution of 0.1 mm. Two pin-diodes measure the β-electron flux and thus the stability
of the gas column density in the WGTS. Furthermore, the forward beam monitor (FBM)
equips a temperature and a hall sensor. A second detector board holding a Faraday cup
for ion measurements is also available [Klein19]. More information about the FBM can
e. g. be found in [Ell+17; Ell19].

The condensed 83mKr source (CKrS): The CKrS is a sub mono-layer of 83mKr on
a pyrolytic graphite substrate with a diameter of 2 cm. It can be lowered in the pump
port of the CPS and moved in a 2-dimensional plane perpendicular to the beam line. This
enables the spatial scanning of the properties of the spectrometer using quasi-monoenergetic
conversion electron lines of 83mKr [Bau14; Dyb19; Are+18a].
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Figure 2.5.: The cryogenic pumping section (CPS) is the coldest part of the
KATRIN experiment. It consists of seven elements, labeled by 1 to 7 from the DPS to
the pre spectrometer. Elements 2 to 5 are covered by a frozen argon layer at 3 K in order
to cold-trap tritium molecules. The low temperatures are established using liquid helium
(LHe) and an insulation of liquid nitrogen (LN2). Each element is enclosed by a super
conducting coil (M1 to M7) for magnetic guidance of the β electrons. For the FBM and
the CKrS the reader is referred to the main text. (Adapted from [Sei19].)

2.6. Pre and Main Spectrometer

The pre and main spectrometer are vacuum vessels designed to filter passing electrons
according to their kinetic energy. The pre spectrometer has a length of 3.4 m and a diameter
of 1.7 m. Details on its design can e. g. be found in [Val09; Frä10]. The main spectrometer
has a length of 23 m and a diameter of 10 m. Details on its design can e. g. be found in
[Val09; Val04]. The functionality and purpose of spectrometer related aspects are reviewed
in this section. The content is divided into two parts: Section 2.6.1 explains the so-called
MAC-E filter principle and section 2.6.2 list several measures to keep the strict KATRIN
background requirements.

2.6.1. MAC-E-Filter Principle

The pre and main spectrometer are based on the principle of the so-called magnetic
adiabatic collimation with electrostatic filtering (MAC-E) [BPT80]. It enables the filtering
of electrons according to their kinetic energy. Figure 2.6 sketches the MAC-E filter of
KATRIN. The following paragraphs outline the basic concepts and their experimental
implementation. As the principle is of key importance for the KATRIN experiment, it is
additionally treated in a mathematical way in the subsequent section 3.2.3.

Electrostatic filtering: A retarding voltage barrier is applied along the beam axis within
the spectrometer, reaching its maximum U at the so-called analyzing plane in the center
and dropping off towards the source section and the detector. The retarding voltage barrier
deflects electrons with kinetic energies below eU . For higher energies, whether an electron
can pass the spectrometer or not depends on the angle between its direction of motion and
the magnetic field lines (see eq. 3.13 for a quantitative description).

Magnetic collimation: The electric field gradient of the retarding voltage barrier is
parallel to the beam line, but β electrons are emitted in an arbitrary angle with respect
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Figure 2.6.: Scheme of the KATRIN main spectrometer and the magnetic
adiabatic collimation with electrostatic filtering (MAC-E) filter principle. The
KATRIN design magnetic field settings are BPS2 = 4.5 T, BS = 3.6 T, Bmax = 6.0 T,
BD = 3.6 T, BA ≈ 3× 10−4 T. ~E denotes the magnetic field regulated by the retarding
potential U that reaches its maximum Ua = U at the analyzing plane. (Adapted from
[Sei19].)

to the magnetic field lines. In order to analyze their full kinetic energy, they have to be
collimated. This is achieved by a magnetic field gradient that drops from BS = 3.6 T in the
STS to BA ≈ 3× 10−4 T in the analyzing plane. In the following, a plausibility argument
for the momentum collimation due to the field gradient, according to [KAT05], is given:
Electrons entering the spectrometer vessel perform cyclotron motions around the magnetic
field lines. Their total kinetic energy ES is split into a longitudinal component E‖ along
the beam axis and a transverse component E⊥

ES = E‖ + E⊥ . (2.1)

In the non-relativistic and adiabatic approximation, the transverse component can be ex-
pressed by the magnetic field strength B and the electron’s magnetic moment µ respectively
its charge q = e, its mass me and angular momentum L [Jac75]

E⊥ = −µB = e

2me
LB . (2.2)

Adiabaticity conserves the angular momentum L and the total energy of the electron ES
along its trajectory. Hence, when the magnetic field strength B decreases to BA = Bmin
in the analyzing plane, the transverse component of the electron’s energy E⊥ decreases
likewise and transforms to longitudinal energy E‖.

Magnetic Bottle effect: As the source is placed in a lower magnetic field BS compared
to the maximum field strength along the beam line Bmax at the detector side, β electrons
traveling downstream to the detector are subject to the magnetic bottle effect [KAT05].
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They get reflected and travel upstream to the rear wall if their starting angle θS with respect
to the beam line axis surpasses θmax with

sin θmax =
√

BS
Bmax

. (2.3)

For the KATRIN design values Bmax = 6 T and BS = 3.6 T one obtains θmax ≈ 51◦. A
cutting angle θmax is beneficial because the greater the emission angle of a β electron the
larger the distance it travels in the WGTS and the more it is subject to energy losses such
as scattering or synchrotron radiation [KAT05].

MAC-E-filter width: Electrons with a kinetic energy below qU cannot pass the spec-
trometer. Electrons with a kinetic energy above qU + ∆E do pass the spectrometer. Here,
∆E denotes the filter width [KAT05]

∆E = BA
Bmax

E . (2.4)

Electrons with an energy between eU and eU + ∆E pass the potential barrier only with a
certain probability. A quantitative description of this so-called transmission probability is
given in the subsequent section 3.2.3. However, it can already be deduced, that a larger
∆E adds a greater uncertainty to the measurement and thus it should be kept as low
as possible. ∆E depends on the maximum magnetic field strength along the beam line
Bmax = 6 T, the kinetic energy of β electrons E ≈ 18.6 keV, and the magnetic field in the
analyzing plane BA ≈ 3× 10−4 T. Hence, its KATRIN design value is ∆E ≈ 0.93 eV.

Dimensions of the KATRIN main spectrometer: This paragraph outlines, why the
diameter of the KATRIN main spectrometer is 10 m, while the one of its predecessor
experiment in Mainz was only 1 m [Kra+05]. KATRIN’s envisaged sensitivity requires a
relative MAC-E-filter width of at least ∆E/E = 1/20000, which directly corresponds the
ratio of the magnetic fields Bmax/BA (see eq. 2.4). For a smaller ∆E, BA should be chosen
as low as possible. However, the lower BA, the wider the flux tube that must be governed
by the spectrometer vessel. Also, the magnetic field must decrease at a sufficiently slow rate
from the spectrometer’s entrance to the analyzing plane in order to guarantee adiabaticity,
which requires a certain spectrometer length. Dimensions that meet the demands and
are feasible for the main spectrometer were found to be a radius of 10 m and a length of
23 m [KAT05; Val04].

Given the requirements on the magnetic and electrostatic fields, the following two paragraphs
review their technical implementation:

Magnetic field: The main spectrometer is surrounded by a system of coils that shapes
the MAC-E filter’s magnetic field. Upstream, there is the PS2 magnet (Bmax = 4.5 T);
downstream the pinch (BP = Bmax = 6.0 T) as well as the detector magnet (BD = 3.6 T),
which are superconducting solenoids. The field is fine-tuned by a system of air coils
around the spectrometer hull: There is the Earth magnetic field compensation system
(EMCS) with 26 current loops parallel to the beam line axis. Furthermore, there is the
low-field correction system (LFCS) with 14 air coils perpendicular to the beam line axis.
The combined system constrains the electrons’ flux tube to the spectrometer vessel and
compensates the Earth’s magnetic field as well as effects from ferromagnetic materials in
the spectrometer’s surroundings [Erh+18]. Additionally, a vertical and radial magnetic
measuring system (VMMS and RMMS) are installed outside the spectrometer vessel. The
field inside the spectrometer vessel is assessed via samples of these measuring systems
combined with simulations [Let+18].

Electrostatic field: A high-voltage system establishes the MAC-E filter’s retarding
potential. The fluctuation of the retarding voltages must have a standard deviation smaller
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than 60 mV for the envisaged sensitivity to the neutrino mass [KAT05]. The antenna-like
beam line setup is sensitive to electromagnetic fluctuations of any source, which is why
an active post-regulation system for the voltage is deployed. It monitors the retarding
potential and regulates it with the required precision. For the monitoring the monitor
spectrometer and a voltage divider are deployed. For details on the later systems the reader
is referred to [Thü+09; Erh+14; Zbo11].

2.6.2. Background Mitigation Strategies

The KATRIN sensitivity goal requires a background rate of less than 10 mcps [KAT05].
Several background-related aspects with respect to the spectrometer tanks are listed below:

Vacuum: The spectrometers are operated at a pressure on the order of 1× 10−11 mbar.
This prevents electron scattering on residual gas and minimizes background effects by
ionization. Correspondingly, turbo molecular and getter pumps are installed at three pump
ports of the spectrometer vessels. Furthermore, the spectrometers can be baked out at up
to 350 ◦C [Are+16].

Wire electrodes: The inner walls of the spectrometer vessels are lined by wire electrodes.
Their potential is a few hundred volts more negative than the spectrometer hull reflecting
electrons coming from the vessel walls. Such electrons may be induced by cosmic rays [Val09].

Ion blocking: Analogously to the ones in the CPS (section 2.5), three blocking electrodes
are installed; one between the CPS and the pre spectrometer, one between the pre and
main spectrometer; and one between the main spectrometer and the detector [Klein19].

Tandem setup: β electrons may scatter on residual gas. This can either directly lead to
secondary electrons or create positive ions that travel down the beam line. The positive
ions in turn may again yield secondary electrons through scattering. The more β electrons
enter the main spectrometer, the higher is the probability to create secondary electrons. In
order to reduce the flux of β electrons into the main spectrometer, the retarding potential
of the pre spectrometer is set to a few hundred volts more positive than the one of the main
spectrometer. On the one hand, this is a countermeasure against background events, but,
on the other hand, charged particles can be trapped between the two spectrometers due to
the electromagnetic setup (Penning trap). A sudden discharge may harm the hardware,
especially the detector. Therefore, it is possible to sweep a charged wire through the volume
in order to collect the trapped particles and avoid this “Penning discharges” [Val09].

2.7. Detector Section

The detector section terminates the beam line in downstream direction. It can be separated
from the spectrometer section by closing a gate valve. The detector section is depicted in
figure 2.7 and a detailed description can e.g. be found in [Ams+15]. The major features of
the detector section are reviewed in the following:

Focal plane detector (FPD): The FPD counts the β electrons that pass the spectrometer
section. It is a pin-silicon detector with a sensitive area of 9 cm diameter. It is subdivided
in 148 pixels of the same area arranged in 12 rings of 12 pixels each and the so-called
bull’s eye of 4 pixels in the center. This arrangement allows for later correction for radial
electrical, magnetic and gas dynamical inhomogeneities in the beam line [Ams+15].

Shield and veto system: The radiation shield of the FPD system consists of two nested
cylindrical shells: an outer lead shell of 3 cm, that reduces photon background and an inner
copper shell of 1.27 cm, that blocks X-rays originating from the outer lead shell. The shield
is surrounded by a veto system to tag incoming muons. Such a system is necessary to keep
the strict background requirements [Ams+15].
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Figure 2.7.: The detector section terminates the KATRIN beam line. Among other
instruments, it houses the focal plane detector (FPD) for β electrons with the detector
wafer at its core. For an explanation of the other components the reader is referred to
the main text. (Adapted from [Sei19].)

Calibration: Photoelectron sources can be lowered in the line of sight of the detector.
The corresponding photocurrent can be measured with the precision ultra-low current
integrating normalization electrometer for low-level analysis (PULCINELLA) system. A
comparison of PULCINELLA and the FPD yields the FPD’s detection efficiency. It was
determined to be εdet = 95± 1.8± 2.2% [Ams+15].

Detector magnet: The detector magnet (BD = 3.6 T) allows to form the flux tube near
the detector independently of the main spectrometer magnetic field setting. It especially
allows for the mapping of the flux tube onto the detector [Ams+15].

Post-acceleration electrode: The post-acceleration potential shifts the electrons arriving
from the main spectrometer to a more favorable energy region. This increases the detector
efficiency and, additionally, β electrons can be distinguished from noise originating in
the detector by an energy region of interest cut. An appropriate setting was found to
be ∼ 10 keV [Ams+15].



3. Mathematical Formalism of a
KATRIN Measurement

For neutrino mass inference from simulated or real data, a mathematical model of a
KATRIN neutrino mass measurement is required. As parameter inference is of relevance
for the topic of this thesis, a mathematical formalism describing a KATRIN neutrino
mass measurement is outlined within this chapter. Section 3.1 gives an expression for the
tritium β-decay rate. Section 3.2 describes the KATRIN response function, respectively
the mathematical modeling of the KATRIN apparatus. Sections 3.3 combines the concepts
of the two preceding sections into the β-electron rate at the KATRIN detector. Section 3.4
incorporates the detector efficiency, the background rate and the measurement time in
order to translate the rates into an expression for the electron counts measured by the
KATRIN detector for a fixed retarding potential. Section 3.6 introduces the concept of a
measurement time distribution over retarding potentials. Finally, section 3.7 shows a full
simulated KATRIN neutrino mass measurement as obtained by the presented formalism.

3.1. Differential Tritium-β-Decay Spectrum

This section presents a quantitative expression for the β-decay rate within a tritium
molecule normalized to a tritium nuclei in dependence on the kinetic energy of the emitted
β electron (differential rate). First the whole mathematical description is denoted, then its
components are explained.

Using Fermi theory and Fermi’s golden rule the decay rate of a tritium molecule is [Kle+19;
OW08]

dΓ(ES)
dES

=G2
F|Vud|2

2π3 |Mnuc|2 · F (Z,ES) · p(ES +me) ·
∑
f

Pf · εf ·
√
ε2f −m2

ν ·Θ(εf −mν) .

(3.1)

Its constituents are the kinetic electron energyES; the effective squared electron-antineutrino
mass m2

ν defined via the PMNS matrix U (eq. 1.4),

m2
ν =

∑
i

|Uei|2m2
i ; (3.2)

the Fermi constantGF; the up-down-quark-coupling given by the Cabibbo angle θC [Tan+18]

Vud = cos θC = 0.97425± 0.00022; (3.3)

and the nuclear transition matrix element [Tan+18]

|Mnuc|2 = g2
V + 3g2

A with gV = 1 and gA/gV = −1.2646± 0.0035 (3.4)

23
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Figure 3.1.: Tritium-β spectrum for a vanishing and non-vanishing neutrino
mass. The graph shows the differential rate as described by equation (3.1) for a vanishing
and non-vanishing neutrino mass. The inset zooms into the endpoint region where a non-
vanishing mass causes a shift and a distortion of the spectrum. (Calculated with [S-SSC].)

which is independent of the electron’s kinetic energy (as the decay is super-allowed) and
given by the vector gV and axial vector gA coupling.

Furthermore, the Fermi function F (Z,ES) accounts for the Coulomb interaction between
the outgoing electron and the daughter nucleus with atomic charge Z = 2, which in its
relativistic version can be approximated as [Sim81]

F (Z,ES) ≈ 2πη
1− exp 2πη ·R , (3.5)

with Sommerfeld parameter η = αZ/β, fine structure constant α, relativistic velocity β
and a relativistic correction factor R = 1.002037− 0.001427β.

The phase-space factor of the outgoing electron with momentum p and mass me is given
by the factor p(ES +me).

The phase space factor of the emitted neutrino depends on multiple quantities: First,
there is the β-spectrum endpoint of molecular tritium E0 = (18 574.00± 0.07) eV [Mye+15;
OW08]. Second, there is the final state energy of the molecule Vf . The exited energy state
f is caused by vibration, rotation or electronic excitation of the decaying molecule. A
review on tritium molecular final states and tabulated values can e. g. be found in [BPR15]
and references therein. The probability that the molecule is in a final state of energy Vf
after the decay is denoted by Pf . Then the energy of the neutrino reads

εf = E0 − ES − Vf . (3.6)

Third, there is the neutrino’s momentum
√
ε2f −m2

ν. Then, the complete phase space factor
of the neutrino is a sum over all possible molecular final states labeled f .

Lastly, the Heavyside step function Θ ensures a positive kinetic energy of the neutrino.
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The differential rate is depicted in figure 3.1 for a vanishing and non-vanishing effective
electron-antineutrino mass. The difference of the two β spectra forms the foundation for
neutrino mass inference at KATRIN.

3.2. Response Function

The aim of this chapter is an introduction to the mathematical formalism for the electron
rate at the KATRIN detector. The previous section 3.1 gives an expression for the
differential β-electron rate. The next step is the inclusion of the characteristics of the
KATRIN experimental setup. This can be accomplished by introducing the KATRIN
response function. In the outlined formalism, it reflects the probability of an electron
emitted in the WGTS to reach the KATRIN detector [Gro15] as a function of experimental
settings. Which settings are incorporated in particular is developed throughout this chapter.

First, central concepts, the used nomenclature and an overview of the respected experimental
settings are presented in section 3.2.1 . Then, the components of the response function are
introduced:

• The gas dynamics within the WGTS needs to be simulated. See section 3.2.2.

• The characteristics of the KATRIN spectrometer can be summarized in the transmis-
sion function. See section 3.2.3.

• The passage of electrons through the WGTS is influenced by scattering off gas
molecules. The probability for such scattering is discussed in section 3.2.4. Fur-
thermore, the amount of energy an electron loses when scattering is considered in
section 3.2.5.

Finally, the described components will be assembled to the KATRIN response function in
section 3.2.6 and section 3.2.7 summarizes the obtained results.

3.2.1. Concepts and Nomenclature

Before the formalism for the KATRIN response function is developed, this section introduces
naming conventions and useful concepts.

Coordinate System

This chapter focuses on a one-dimensional description of the KATRIN response function.
The position along the beam line is denoted with z. The origin of the coordinate system is
the center of the WGTS as already chosen in previous works, e. g. [Gro15; Kle14]. In this
sense, the rear and the front of the WGTS of length d have the coordinates ∓d/2.

Pitch Angle

In this chapter, the angle between an electron’s direction of motion and the magnetic field
along the beam line axis, the so-called pitch angle, is denoted by θ.

Parameter Indices

Whether an electron reaches the KATRIN detector depends i. a. on its starting parameters
when originating in the WGTS. In this chapter, these starting parameters are denoted
with a lower index S. The three decisive starting parameters are the following:

1. the starting kinetic energy ES as discussed within the description of the differential
rate in equation (3.1),

2. the starting position zS within the WGTS and
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3. the starting pitch angle θS within the WGTS.

Parameters that denote quantities in the analyzing plane (see section 2.6) are denoted with
a lower index A.

Probabilistic Treatment of the Starting Pitch Angle

It should be noted, that the three listed starting parameters are not known for a single β

electron, which suggests a probabilistic treatment. Within the scope of this thesis, this is
of importance with respect to the starting pitch angle. Therefore, the concept is explained
in the following:

Given the distribution ω(θS) of starting pitch angles, the mean value of any function g(θS)
depending on a fixed starting pitch angle θS can be calculated within an interval [0, θmax]
by applying the definition of the mean value

〈g(θS)〉 =
∫ θmax

0 ω(θS)g(θS) dθS∫ θmax
0 ω(θS) dθS

. (3.7)

An isotropic β-electron emission by a tritium molecule into the unit sphere, meaning all
combinations of spherical emission angles (ϕ, ϑ = θS) are equally likely, yields as distribution
for the starting pitch angles of [KAT05]

ω(θS) = sin θS (3.8)

with normalization ∫ θmax

0
ω(θS) dθS = 1

1− cos θmax
. (3.9)

In this chapter, θmax denotes the maximum acceptance angle due to the magnetic bottle
effect as explained in section 2.6.1 with a design value of θmax ≈ 51◦ [KAT05]. This
calculation of the mean value is applied multiple times throughout this thesis.

Experimental Settings

As the response function models the characteristics of the KATRIN apparatus, it naturally
depends on the experimental settings. The quantities used within this chapter are listed in
the following:

• the magnetic field BS at the place of origin of a β electron within the WGTS,

• the magnetic field BA within the analyzing plane,

• the maximum magnetic field Bmax along the beam line axis,

• the retarding voltage U and the retarding energy qU and

• the starting potential US of a β electron within the WGTS.

For the detailed meaning of these parameters and their KATRIN design values, see section
2.6. It should be noted, that none of these quantities are constant, but that they exhibit
a spatial, especially a radial, dependency [KAT05]. For ease of notation, the spatial
dependency is left implicit within this chapter. Also, the detector efficiency is treated
separately from the response function (see subsequent section 3.4).

3.2.2. Gas Dynamics
The gas dynamics within the STS has to be simulated. This topic is not treated in detail here.
The reader is referred to [Höt12; Hei18; Kuc+18; Kuc16]. In short, in a one-dimensional
description, the result of such a gas dynamic simulation is the gas molecule density ρ(z).
For nominal settings, averaging ρ(z) along the beam line axis and multiplication by the
length d of the WGTS yields the design column density ρd = 5× 1017 cm−2 [KAT05].
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Figure 3.2.: The KATRIN transmission function as described by equation (3.13).
It denotes the probability for an electron with a kinetic energy E to pass through the
spectrometer set to a retarding energy of qU . The probabilistic treatment of the starting
pitch angles of electrons leads to the MAC-E-filter width ∆E with the nominal value of
0.93 eV [KAT05]. (Calculated with [S-SSC].)

3.2.3. Transmission Function
The transmission function denotes the probability of an electron to pass the MAC-E filter.
It can be characterized by the transmission energy [Gro15]

Etr(qU,E, θS) = q(U − US)
1− sin2 θS

BA
BS

γ(E)+1
γA+1

. (3.10)

where γ(E) and γA denote the relativistic Lorentz factor of the β electrons with energy E
and in the analyzing plane. As the electrons are slowed down substantially by the retarding
potential in the spectrometer, γA ≈ 1 holds to a good approximation. In the following, for
ease of notation, also US = 0 and γ(E) = 1 is assumed (the form of the following equations
allow to easily identify that the correct values would have to be re-substituted into the
retarding voltage or in the fraction of the magnetic fields, which justifies this simplified
notation).

Electrons pass the MAC-E filter if their energy E when arriving at the spectrometer
surpasses the transmission energy Etr (eq. 3.10). This condition can be resolved for the
starting pitch angle [Gro15]

E > Etr(qU,E, θS)

⇔ θS < θtr(E, qU) := arcsin
(√

E − qU
E

BA
BS

)
. (3.11)

Using equation (3.11), the transmission function depending on the starting pitch angle and
the starting energy of electrons can be formulated as a step function

T(E, qU, θS) =
{

1 if θS < θtr(E, qU)
0 otherwise

. (3.12)
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Calculating the mean value of this step function with respect to the probabilistic distributed
starting pitch angles of β electrons as described in section 3.2.1 yields the KATRIN
transmission function [KAT05]

T (E, qU) = 〈T(E, qU, θS)〉 =



0 if E < qU

1−
√

1−E−qU
E

BS
BA

1−
√

1−∆E
E

BS
BA

if qU < E < qU + ∆E

1 if qU + ∆E < E

, (3.13)

where
∆E = E ·BA/Bmax (3.14)

is the MAC-E-filter width as explained in section 2.6. The transmission function is depicted
in figure 3.2 for the KATRIN design values.

3.2.4. Probability for Electron-Scattering within the WGTS

This section derives an expression for the probability Pl for an electron to scatter l times
in the WGTS.

The electron moves on a spiral track due to its cyclotron motion in the magnetic field in
the WGTS. Therefore, when traveling an infinitesimal distance dz in z-direction, it travels
a total distance of

ds = 1
cos θS

dz . (3.15)

Remarkably, this expression is independent of the electron energy and the magnetic field
strength in the WGTS. The effective column density can then be expressed as a line
integral along the electron’s path ϕ over the gas density ρ(z) from the starting position of
the electron to the point where it leaves the WGTS

λ(zS, θS) =
∫
ϕ
ρ(~r) ds = 1

cos θS

∫ d/2

zS
ρ(z) dz . (3.16)

Then, the expected scattering count is the product of the effective column density λ(zS, θS)
and the scattering cross section σ [Gro15]

µ(zS, θS) = λ(zS, θS)σ . (3.17)

Using equation (3.17), the probability for l-fold scattering can be expressed as a Poisson
distribution [Gro15]

Pl(zS, θS) = µ(zS, θS)l

l! e−µ(zS,θS) . (3.18)

The mean value with respect to the starting positions and the starting pitch angles can be
calculated [Gro15]

P̄l = 1
d

∫ d/2

−d/2

1
1− cos θmax

∫ θmax

0
sin θSPl(zS, θS) dθS dzS . (3.19)

Table 3.1 lists the numerical evaluation of these averaged scattering probabilities. With
these probabilities at hand, the next step is the derivation of the energy an electron loses
when scattering.
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Table 3.1.: Probability for severalfold electron-scattering in the WGTS. Listed
are the evaluations of equation (3.19) for the following input parameters: A scattering
cross section of σ = 3.456× 10−22 m2 [KAT05], a constant gas column density ρd =
5× 1017 cm−2, a WGTS beam tube length of d = 10.0820 m and a maximum acceptance
angle of θmax = 50.7685◦. The same values can be found in [Gro15; Kle14]. The reader is
also referred to a review of this values in section 5.2.

scattering count l scattering probability
according to equation (3.19)

0 41.33%
1 29.27%
2 16.73%
3 7.91%
4 3.18%

Figure 3.3.: The probability
density for the energy loss
of electrons due to scatter-
ing off tritium molecules.
The energy loss function is
shown as per equation (3.21)
and as determined at the
Troitsk experiment [Ase+00].
The table below lists the
corresponding parameters,
where ε1 was fixed and εc was
chosen to make the piecewise
defined function continuous.

parameter value
A1 0.204± 0.001
A2 0.0556± 0.0003
ω1 (1.85± 0.02) eV
ω2 (12.5± 0.1) eV
ε1 12.6 eV
ε2 (14.30± 0.02) eV
εc 14.09 eV
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3.2.5. Energy Loss of Electrons due to Scattering

This section describes the “energy loss function” fl(ε). It denotes the probability density
for an electron to lose a specific amount of energy ε when scattering l times. Only the
case of inelastic scattering is treated here. For an additional treatment of elastic scattering,
which is less likely by one order of magnitude1, the reader is referred to [Kle+19].

The energy loss function for no scattering is the Dirac delta function [Kle+19]

f0(ε) = δ(ε) . (3.20)

A phenomenological description for 1-fold scattering of electrons off hydrogen isotopologues

1Compare the cross sections σinel = 3.456 × 10−22 m2 [KAT05] and σel = 0.29 × 10−22 m2 [Kle+19] for
kinetic electron energies of ∼ 18.6 keV that are relevant in regard to the KATRIN experiment.
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was derived from data at the Troitsk experiment [Ase+00; Abd+17]

f1(ε) =


0 if ε < 0

A1 · e
−2
(
ε−ε1
ω1

)2

if 0 ≤ ε < εc

A2 ·
ω2

2
ω2

2+4(ε−ε2)2 if ε ≥ εc

(3.21)

Figure 3.3 depicts this energy loss function for scattering off tritium molecules. It should
be noted, that a more recent, preliminary energy loss model derived from a designated
subgroup of the KATRIN collaboration is investigated in chapter 6.

For severalfold scattering, the above function f1 has to be convoluted with itself and the
energy loss function becomes [Kle+19]

fl(ε) =
l

⊗
i=0

f1(ε) (3.22)

where ⊗ denotes the convolution

(f ⊗ f)(ε) =
∫ ∞
−∞

f(ε− ε′)f(ε′) dε′ . (3.23)

3.2.6. Assembly of the Response Function

This section gives an expression for the KATRIN response function. It should be noted,
that the notation chosen here differs slightly from the ones used in the works [Gro15;
Kle+19], that this derivation is largely based on. The latter make approximations of the
transmission properties and introduce more involved concepts where the approximations
do not hold. Here, this approach is inverted: First, the involved concepts are applied
and the approximations are introduced in a second step. However, the final results are in
agreement.

The KATRIN response function in dependence on the starting position and pitch angle of
an electron reads

R(ES, qU, zS, θS) =
∑
l

∫ ∞
−∞

T(ES − ε, qU, θS) · Pl(zS, θS) · fl(ε) dε (3.24)

=
∑
l

∫ ∞
0

T(ES − ε, qU, θS) · Pl(zS, θS) · fl(ε) dε . (3.25)

where the integral goes over the energy losses, the sum goes over the scattering count,
T denotes the non-averaged transmission function (3.13), Pl the non-averaged scattering
probabilities (3.18) and fl the energy loss function (3.22). The cut of the lower integral
limit is caused by the vanishing energy loss function (fl(ε) = 0 if ε < 0). In words, the
transmission function is smeared using the energy loss function as a smearing kernel and
then a weighted sum is formed over generations of l-fold scattered electrons where the
weight is the probability to scatter l times.

The mean value of equation (3.24) with respect to the starting pitch angle can be calculated
as described in section 3.2.1. Also, the corresponding integral is swapped with the integral
over the energy loss and the sum over the scattering count

R(ES, qU, zS) = 〈R(ES, qU, zS, θS)〉

=
∑
l

∫ ∞
0

∫ θmax

0

sin θS ·T(ES − ε, qU, θS) · Pl(zS, θS)
1− cos θmax

dθS · fl(ε) dε . (3.26)
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This expression can be reformulated to have the same form as the non-averaged response
function (3.24). This means, the product “transmission function times scattering probability
times energy loss function” can be reestablished, which also reconciles the notation with the
expression given in [Gro15]. Therefore, the factor 1 = P̄l/P̄l with the averaged scattering
probabilities from equation (3.19) is introduced into equation (3.26) and the “detailed
transmission function” T ?l is defined

R(ES, qU, zS) =
∑
l

∫ ∞
0

∫ θmax

0

sin θS ·T(ES − ε, qU, θS) · Pl(zS, θS)
(1− cos θmax) · P̄l

dθS︸ ︷︷ ︸
T ?
l

(ES−ε,qU,zS)

·P̄l · fl(ε) dε

=
∑
l

∫ ES−qU

0
T ?l (ES − ε, qU, zS) · P̄l · fl(ε) dε , (3.27)

where the cut on the upper integral limit from ∞ to ES − qU is justified below.

The non-averaged transmission function T (3.11) within T ?l is a step function with respect
to the starting pitch angle θS of an electron. This cuts the upper integral limit from θmax
to θtr when integrating over θS . Furthermore, in analogy to the KATRIN transmission
function from equation (3.13), a distinction of cases avoids imaginary square roots. One
obtains the detailed transmission function as given in [Gro15; Kle+19]

T ?l (E, qU, zS) =


0 if E < qU∫ θtr(E,qU)

0
sin θS·Pl(zS,θS)
(1−cos θmax)·P̄l

dθS if qU < E < qU + ∆E

1 if qU + ∆E < E

, (3.28)

where θtr denotes the transmission-pitch angle (3.11) and ∆E the MAC-E-filter width (3.14).
As T ?l vanishes for E < qU the upper integral limit over energy losses in the response
function (3.27) can be cut to ES−qU . Furthermore, it was found, that for l > 3 scatterings,
the detailed transmission function T ?l can be exchanged for the KATRIN transmission
function (3.13) without introducing a significant error [Gro15].

3.2.7. Discussion of the Response Function

In equation (3.27), the KATRIN response function was derived, which reconciles with the
expressions given in [Gro15; Kle+19]

R(ES, qU, zS) =
∑
l

∫ ES−qU

0
T ?l (ES − ε, qU, zS) · P̄l · fl(ε) dε , (3.29)

where T ?l is the detailed transmission function (eq. 3.28), P̄l are the averaged scattering
probabilities (eq. 3.19), and fl is the energy loss function (eq. 3.22). The response function
denotes the mean (with respect to the pitch angle distribution) probability of an electron
starting with an energy ES at a position zS to overcome the retarding energy qU and reach
the detector.

Figure 3.4 shows the response function for two different starting positions of electrons as
well as averaged over all starting positions. It exhibits many features: For unscattered
electrons, the response function resembles the transmission function. This causes the
steep rise at ES − qU = 0 eV within the interval of the MAC-E-filter width ∆E ≈ 0.93 eV.
As the transmission probability is weighted by the probability for no scattering, the
plateaus resemble the corresponding probabilities (eq. 3.18 averaged over starting pitch
angles): ∼ 12 % (rear), 41.33 % (average, see table 3.1), ∼ 98 % (front). Furthermore, the
discontinuity in the first derivative of the energy loss function at εc = 14.09 eV causes
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Figure 3.4.: The KATRIN response function at a retarding energy of qU = 18 545 V.
It is depicted for three cases: for electrons starting ∼ 9 mm from the rear and front of
the WGTS and averaged over all starting positions. For a description of the manifold
features, the reader is referred to the main text. (Calculated with [S-SSC].)

kinks in the response function. As the energy loss function has an onset at ε0 ≈ 10 eV, the
corresponding kinks are at n · ε0 + εc (n ∈ {0, 1, . . .}) and are increasingly smoothed for
higher n. (Also see figure 3.3 for the energy loss function.) The response function (3.29)
can be understood as a weighted sum of smeared transmission functions approximately
shifted by the onset of the energy loss function. Electrons starting from the front of the
WGTS are unlikely to scatter, which is why the response function almost resembles the
transmission function. Electrons starting from the rear are likely to scatter. Thus, the
corresponding response function shows the features of multiple scatterings. For multiple
scatterings, the sharp edges of the transmission function are smoothed by the energy loss,
which is why only one sharp edge and one plateau, namely for the no-scattering case, is
apparent.

3.3. Integral Rate
This section gives an expression for the integral β-electron rate at the KATRIN detector.
As already mentioned, the response function (3.29) depends on the starting position of the
electrons. To account for this, the WGTS can be thought of being divided into n slices of
width w = d/n and an averaged response function for the jth (j ∈ {0, 1, . . . , n− 1}) slice
can be given:

R(ES, qU, zS)→ Rj(ES, qU) = 1
w

∫ −d/2+(j+1)w

−d/2+jw
R(ES, qU, zS) dzS . (3.30)

As can be seen from equations (3.29) and (3.28), this averaging integral can be propagated
to the scattering probabilities in the enumerator of the detailed transmission function.
The integral rate then reads [Kle+19]

Γ(qU) = 1
2

n∑
j=0

Nj,T ·
∫ E0

qU

(dΓ(ES)
dES

)
·Rj(ES, qU) dES . (3.31)
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Here, the integral goes over all starting energies that enable electrons to overcome the
retarding potential. The transmission probability vanishes for starting energies smaller
than qU and the differential rate vanishes for energies above the β-spectrum endpoint E0
(see equation 3.1), which yields the two integral limits. The sum goes over all slices of the
WGTS. Nj,T is the number of tritium nuclei in the jth slice of the WGTS. And the factor
1/2 accounts for the fact that, on average, only half the β electrons are emitted towards
the detector.

3.4. Detector Counts

This section gives an expression for the electron counts measured by the KATRIN detector.

Therefore, the detector efficiency εdet ∈ [0, 1] has to be taken into account (for a description,
its determination and value see section 2.7). Furthermore, the background rate Γbg (with
a nominal value of 10 mcps [KAT05]) has to be considered. Also a relative rate factor
AS = 1 between the background and the β-electron rate is introduced as it can be used in
fitting procedures (see section 4.3). Assuming a measurement time of t(qU) attributed to a
retarding energy qU , the detector counts are [Kle14]

N(qU) = t(qU) · εdet · (AS · Γ(qU) + Γbg) , (3.32)

where Γ(qU) denotes the integral rate (3.31).

3.5. Model Amendments

The outlined formalism that lead to the expression for the detector counts (3.32) forms a
scaffold for the mathematical formalism that describes a KATRIN measurement. Modifica-
tions of isolated terms can incorporate further effects. For a comprehensive list, the reader
is referred to [Kle+19]. Selected examples are listed below:

• Doppler effect: Gas flow and temperature move the tritium molecules and hence
smear the kinetic energy distribution of β electrons (see section 2.2). This can be
modeled by convolving the differential rate (3.1) with a Maxwellian distribution or
by applying corrections to the final energy states of the decaying molecules.

• Plasma potential: Space charges, respectively a plasma, forms within the WGTS
due to the tritium decay (see section 2.2). β electrons may originate at higher/lower
potentials due to space charges. This can be modeled by an adaption of the starting
potential US in the transmission energy (3.10).

• 3-dimensional description: This chapter focuses on a 1-dimensional formalism.
However, as noted, input parameters such as the magnetic fields are not solely
z-dependent, which requires a 3-dimensional approach and an incorporation of the
segmentation of the detector. This can be accomplished by calculating the detector
counts (3.32) separately for each detector pixel exploiting that the magnetic flux tube
maps specific volumes of the WGTS onto specific areas of the analyzing plane and
detector pixels.

3.6. Measurement Time Distribution

KATRIN measures electron counts as described in equation (3.32) at a set of retarding
energies {qUi}. How much measurement time t(qUi) is attributed to a certain retarding
energy is specified in a measurement time distribution (MTD). The MTD influences the
experiment’s sensitivity to the neutrino mass. An optimal MTD balances the following
aspects:
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1. Some measurement time has to be attributed to retarding energies beyond the
endpoint of the integral tritium-β spectrum to determine the background rate. The
optimal duration depends on the background rate, but can generally take up a sizable
fraction (of order 30 percent) of the overall measurement time. [KAT05; Kle14].

2. Near its endpoint, the shape of the integral tritium-β spectrum depends most strongly
on the neutrino mass. Hence, most measurement time should be attributed to this
region [KAT05; Kle14].

3. Retarding voltage bins deeper into the spectrum increase the count rate and hence,
lower the statistical uncertainty due to Poisson statistics. Theses measurements
mainly determine the slope of the integral β spectrum [KAT05; Kle14].

4. The theoretical description of the integral tritium-β spectrum is optimized for the
endpoint region. For example the molecular final states for β-electron energies 40 eV
below the endpoint would need further investigation [Dos+06]. Hence, deeper scans
introduce modeling uncertainties. However, it is expected that continuous modeling
efforts decrease these uncertainties as needed.

The KATRIN Design Report [KAT05] suggests five three-year-long MTDs for different
measurement ranges [E0 − α eV, E0 + 5 eV] with α ∈ {20, 25, 30, 40, 50} and comes to the
conclusion that α = 30 yields the best sensitivity to the neutrino mass.

As an energy-dependent effect is investigated within this thesis, it should be noted that
scans beyond the 50 eV range have already been performed and may also be performed
again in the future. For example, searches for sterile neutrinos at the keV-scale would
require deeper scans [Mer+19]. On top of that, within several measurement campaigns,
deeper scans were conducted: The First Tritium (FT) commissioning campaign successfully
proved the apparatus functioning. The corresponding MTD covered a range starting at
∼ E0 − 1.6 keV. The KATRIN neutrino mass measurement campaign 1 (KNM1) is being
evaluated during the writing of this thesis. It set out to establish an unprecedented limit
on the neutrino mass by β-decay measurements. Its MTD starts at ∼ E0 − 90 eV, but the
analysis range for neutrino mass inference remains still to be determined.

3.7. A Simulated KATRIN Neutrino Mass Measurement

In summary, a KATRIN measurement yields a set of electron counts {N(qUi)} (eq. 3.32) dis-
tributed over retarding voltage bins {qUi}, where the counts fluctuate statistically [KAT05].
A possible model for the fluctuations is a Poissonian distribution [Kle14]. Figure 3.5 shows
a KATRIN measurement for an MTD starting at E0− 30 eV and a total measurement time
of three years. The distortion of the measured integral rate by a non-vanishing neutrino
mass can be seen approximately 4 eV below the endpoint E0. This distortion can be used
to infer the squared effective electron antineutrino mass from a KATRIN neutrino mass
measurement. Chapter 4 presents corresponding statistical methods.
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Figure 3.5.: Simulated KATRIN neutrino mass measurement for a non-
vanishing neutrino mass. The total measurement time is three years. The top
panel shows the measured integral rate Γ in dependence of the retarding energy.
The center panel shows the relative rate difference for a non-vanishing neutrino mass
Γ(mν = 0.35 eV)/Γ(mν = 0 eV) − 1. The difference is ∼ 2 % at a retarding energy
approximately 4 eV below the endpoint (simulated as E0 = 18 575 eV). The bottom panel
shows the MTD where most measurement time is attributed to the most sensitive region.
This is also reflected by the uncertainty bars of the toy data. (Adapted from [Sei19].)





4. Statistical Methods and Neutrino
Mass Inference at KATRIN

An estimator for the neutrino mass alongside with an uncertainty or an upper limit will be
retrieved by comparing the output of the KATRIN measurement with theoretical predictions
within the process of parameter inference. This chapter reviews a selection of statistical
approaches suitable in relation to the KATRIN experiment.

Section 4.1 outlines the principle of the maximum likelihood estimator (MLE). Section 4.2
relates the principle of the MLE to a KATRIN measurement and neutrino mass inference.
Section 4.3 introduces the formalism of a nominal neutrino mass fit at KATRIN. Section 4.4
reviews the concept of uncertainty intervals and how confidence intervals can be extracted
from the likelihood. Section 4.5 introduces the software framework that was used for
simulated neutrino mass inference within this thesis. And section 4.6 explains the origin of
the often quoted 200 meV (90 % C.L.) KATRIN sensitivity.

4.1. Maximum Likelihood Estimation

The likelihood is the probability of a measurement outcome given a hypothesis. A hypothesis
depending on a parameter vector θ is called a composite hypothesis. A measurement
outcome can be quantified by a vector of observed values x. The probability P of x given
a hypothesis in dependence of θ is called the likelihood function [Tan+18]

L(θ) = P (x | θ) . (4.1)

If p denotes the probability of the independent and identically distributed observed values
xi in x, then the likelihood function can be written as a product [Tan+18]

L(θ) =
∏
i

p(xi | θ) . (4.2)

The parameter vector θ̂ that maximizes the likelihood function is called the maximum
likelihood estimator (MLE) for the true values of θ.

4.2. The Likelihood of a KATRIN Measurement

The MLE-method can be applied to a KATRIN measurement as follows: The data vector
is given by a set of n electron counts {Nobs,i} measured at retarding energies {qUi}. The
following hypothesis can be formulated [Kle14]:

{Nobs,i} follow a Poisson distribution with predicted, expected electron counts
{Ntheo,i(θ)} as per equation (3.32).
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The parameters θ of this composite hypothesis are discussed in the subsequent section 4.3.
For sufficiently high counts (& 25 [Kle+19]), the Poisson distribution can be approximated
by a Gaussian distribution N(x, µ, σ) with mean µ = Ntheo,i(θ) and standard deviation
σ =

√
Nobs,i. The likelihood function then reads [Kle14]

L(θ) =
n∏
i

N
(
x = Nobs,i, µ = Ntheo,i(θ), σ =

√
Nobs,i

)
. (4.3)

Commonly, instead of maximizing the likelihood function, its negative logarithm is mini-
mized and a factor 2 is introduced [Tan+18]. This yields

− 2 lnL(θ) = χ2(θ) =
n∑
i

(
Nobs,i −Ntheo,i(θ)√

Nobs,i

)2

+ constants . (4.4)

The minimization of equation (4.4) yields the MLE estimator θ̂ for θ.

Equation (4.4) is a sum of n random variables following a standard normal distribution.
Hence, evaluated at the MLE, this chi-square expression χ2(θ̂) follows the so-called Pearson’s
chi-square statistic with n− dim(θ) degrees of freedom. Accordingly, the value χ2(θ̂) is a
measure for the goodness-of-fit [Tan+18]. In other words, χ2(θ̂) is a measure on how likely
the data is under the hypothesis stated at the beginning of this section and can be used to
reject it if the data is “not a good fit for the hypothesis”.

In conclusion, equation (4.4) can be used for parameter inference via the maximum likelihood
method at KATRIN.

4.3. A Nominal KATRIN Neutrino-Mass Fit

With regard to a KATRIN neutrino mass measurement, the parameter of interest in the
parameter vector θ is the squared neutrino mass m2

ν . Furthermore, θ typically comprises:
the endpoint of the tritium-β spectrum E0 (eq. 3.6), an overall normalization factor for the
β-electron counts AS (eq. 3.32) and the background rate Γbg (eq. 3.32) [Kle14; KAT05].
Hence, in order to infer the squared neutrino mass, the following four-dimensional likelihood
has to be minimized:

χ2(θ) =
n∑
i

(
Nobs,i −Ntheo,i(m2

ν, E0, AS,Γbg)√
Nobs,i

)2

. (4.5)

Applying this procedure with simulated data enables the determination of KATRIN’s
sensitivity to the neutrino mass (see subsequent section 4.6).

4.4. Uncertainty Intervals

The presented maximum likelihood method (section 4.1) provides point estimates θ̂. How-
ever, additional information can be provided by interval estimates. There are two main
approaches to statistical inference, which may be called Bayesian and frequentist [Tan+18].
They differ in their interpretation of probability, which becomes especially evident by the
interval estimates associated with the two approaches: Credible and confidence intervals.
The following two sections 4.4.1 and 4.4.2 explain the matter in more detail.
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4.4.1. Bayesian Credible Intervals

The likelihood L(x | θ) is a probability distribution for the data x given the parameters θ.
It can be transformed into a probability density for the parameters θ by multiplication
with a prior distribution π(θ) and normalization to one using Bayes’ theorem. The result
is the posterior distribution [Tan+18]

P (θ | x) = L(x | θ) · π(θ)∫
L(x | θ′) · π(θ′) dθ′

. (4.6)

Bayesian statistics provide no fundamental rule for obtaining the prior probability [Tan+18].
This freedom of choice may reflect subjectivity and thus causes controversy.

The posterior is a multi-dimensional probability distribution. With regard to the KATRIN
experiment, there is one parameter of interest, namely, the squared neutrino mass m2

ν. The
other dimensions in the parameter space, denoted by ν, can be marginalized [Tan+18]

p(m2
ν | x) =

∫
P (θ ≡ (m2

ν,ν) | x) dν . (4.7)

This yields a one-dimensional probability distribution for the squared neutrino mass, from
which a credible interval can be extracted.

The prior π(θ ≡ (m2
ν,ν)) can be chosen such that it vanishes for m2

ν < 0. Equation (4.6)
shows that then also the posterior vanishes for m2

ν < 0 independently of the likelihood. In
other words, the likelihood does not have to be evaluated for negative, unphysical squared
neutrino masses.

4.4.2. Frequentist Confidence Intervals

In chapter 6 of this thesis, a sensitivity study is presented that is based on the idea
of confidence intervals. Therefore, in this section, the topic is treated in some detail.
First, definitions are given for the terms “confidence interval”, “coverage probability” and
“confidence level”. Then, it is explained, how confidence intervals can be constructed using
the likelihood.

The unqualified phrase “confidence interval” [Tan+18] refers to frequentist intervals obtained
with a procedure introduced by Neyman [Ney37] (this Neyman construction is not shown in
this thesis, instead another construction is given below, that finds application in chapter 6).
Confidence intervals are given with reference to a parameter θ that is to be estimated
from the data. Within the Neyman construction, the boundary of a confidence interval
is given by a function of the data [Tan+18]. This means, the boundary of a confidence
interval would fluctuate if one were to repeat the experiment many times (because each
time, the obtained data would be different). An ensemble of confidence intervals would
be obtained. The coverage probability α refers to the fraction of confidence intervals in
such a hypothetical ensemble that contains the true parameter value of θ [Tan+18]. If,
in the limit of a large ensemble size, the confidence intervals cover the true parameter
value at least a fraction of α times, the confidence interval obtained from only one data set
is understood to have a confidence level of α [Tan+18]. (An illustration of this abstract
definition is developed throughout the subsequent section 6.3 in the context of a sensitivity
study. Furthermore, a simulated ensemble of confidence intervals with the corresponding
coverage probability is shown in figure 6.3.)

In a practical context, a prescription is required on how to construct confidence intervals of
an eligible confidence level. The Neyman construction [Ney37], as mentioned, or the unified
approach by Feldman and Cousins [FC98] are such prescriptions. The unified approach is
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Figure 4.1.: Illustration of a confidence interval obtained via the likelihood
ratio. The graph illustrates equation (4.8) on how to extract a confidence interval
from a one-dimensional likelihood of Gaussian shape. The negative logarithm of the
likelihood ratio (eq. 4.8) is shown, which is zero at the MLE θ̂ and increases in s2/2-steps
corresponding to confidence intervals of s-σ C.L. (also refer to the main text).

based on the likelihood ratio. An ordering principle enables the construction of a confidence
interval that may either represent an upper limit or and upper as well as a lower limit. How
a confidence interval can be obtained via the likelihood ratio is shown below. However, the
construction shown below yields a so-called classical confidence interval, that always has
an upper and a lower limit and is centrally located around the MLE.

Construction of a Classical Confidence Interval using the Likelihood Ratio

In this paragraph, the construction of a confidence region is discussed, which is the
multidimensional generalization of a confidence interval for the case that the likelihood
depends on more than one parameter (which is the case for the KATRIN likelihood). A
method to construct a confidence region is to consider a test of the hypothesis that the
parameter values θ have the true values θT [Tan+18]. All those parameter values θ that
are rejected by a test of size α are excluded from the confidence region of confidence level
α [Tan+18]. A possible test statistic for θ is the likelihood ratio of the likelihood at the
MLE θ̂ and θ [Tan+18]

λ(θ) = L(θ)
L(θ̂)

. (4.8)

If the likelihood follows the form of a multivariate Gaussian distribution in θ, then the
above test statistic (4.8) can be evaluated and the hyper surface defined by

− lnλ(θ) = s2

2 (4.9)

approximately encloses a s-σ confidence region for θ [Tan+18]. Here, s-σ denotes the
corresponding quantile of a Gaussian distribution (for example, s ≈ 1 for 68 % C.L. or
s ≈ 1.645 for 90 % C.L.).

Equation (4.9) is illustrated in figure 4.1 for the case that θ is one-dimensional. However, in a
realistic scenario, θ comprises more than one dimension (at least four in a nominal KATRIN
neutrino mass fit, see previous section 4.3). Extracting a confidence interval only for the
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squared neutrino mass requires further steps. The introduction of a formalism (profile-
likelihood method) that handles the additional dimensions of the nuisance parameters is
postponed to the subsequent section 6.3.2 where it is presented in the context of a practical
example.

Negative Squared Neutrino Masses

It should be noted, that the extraction of confidence intervals from the KATRIN likelihood
requires its extrapolation to nonphysical, negative squared neutrino masses - a complication
that can be avoided when using Bayesian methods as described in the previous section 4.4.1.
In this thesis, the strategy proposed by [Wei+93] (and implemented in the scope of [Kle14])
is used and the formula for the phase-space factor of the neutrino in the differential β decay
rate (3.1) is adapted for negative squared neutrino masses∑

f

Pf · εf ·
√
ε2f −m2

ν ·Θ(εf −mν)→
∑
f

Pf · (εf +m′ν · e
−(

εf

m′ν
+1)) ·

√
ε2f −m2

ν

with m′ν = µ ·
√
−m2

ν .
(4.10)

The factor µ can be adapted in order to provide an approximately symmetric log-likelihood
function around m2

ν = 0. In this thesis, µ = 0.717 was used. An approximate symmetry
was achieved (see for example table 6.1 and figure 6.2). In order to achieve a perfect
symmetry, the factor might need adaption depending on the actual study and the model of
the detector counts as per equation (3.32) (for example, [Wei+93] suggests µ = 0.76).
In conclusion, in this section, an outline of confidence intervals has been given. It has also
been shown how a confidence region can be constructed using the KATRIN likelihood.

4.5. The KaFit and SSC Software Frameworks
With respect to neutrino mass inference at KATRIN, two components have been presented:
a model for a KATRIN neutrino mass measurement in chapter 3 and a statistical framework
for parameter inference within the current chapter 4.
The two components are implemented within two modules of the KATRIN Analysis and
Simulations Package (KASPER) [S-KAS]:

1. The source and spectrum calculation (SSC) [S-SSC] module implements the
formulas as per chapter 3. Additionally, it also includes aspects beyond the given
description, for example the gas dynamics within the WGTS. It is based on several
previous works, such as [Höt12; Gro15; Kle14; Käf12; Hei18; Kuc16].

2. The KATRIN Fitter (KaFit) [S-KF] module translates the β spectrum calculated
by SSC into predicted detector counts [Kle14]. Furthermore, KaFit implements
several statistic tools tailored to the KATRIN experiment, one of which is the
extraction of confidence intervals according to the profile-likelihood method (see
subsequent section 6.3.2), which is of importance in the scope of this thesis. The
actual minimization and profiling are done by the interfaced MINUIT2 [S-MIN] and
MINOS package from the ROOT [Ant+09] analysis framework.

Both modules were used and extended to allow for the analysis done in the scope of this
thesis as is explained in the subsequent chapters 5 and 6.

4.6. KATRIN’s Sensitivity to the Neutrino Mass
This section explains the origin of the often quoted KATRIN design sensitivity to the
neutrino mass of 200 meV (90 % C.L.). First, a definition of the sensitivity is given in
section 4.6.1. Subsequently, section 4.6.2 and 4.6.3 show how this definition was applied by
different works to deduce KATRIN’s sensitivity.
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Figure 4.2.: Illustration of KATRIN’s sensitivity to the neutrino mass. The
graph illustrates KATRIN’s sensitivity of 200 meV [KAT05] as per equation (4.11). It
shows a hypothetical measurement of the neutrino mass that yields a symmetric confidence
interval (90 % C.L.) centrally located around the best fit estimator. If such a classical
confidence interval is constructed, KATRIN can reject the null hypothesis of a vanishing
neutrino mass at 90 % C.L. if it estimates a neutrino mass of at least 200 meV.

4.6.1. Definition and Construction of KATRIN’s Sensitivity

KATRIN’s sensitivity can be understood as half the width of a symmetric and central
confidence interval (90 % C.L.) for the neutrino mass obtained from a KATRIN neutrino
mass measurement. As such, it can be constructed from a 1-σ uncertainty σtot(m2

ν) on the
squared neutrino mass [KAT05]

Smν(90 %) =
√

1.645 · σtot(m2
ν) , (4.11)

where the factor 1.645 translates the 68.3 % interval into a 90 % interval in the case of
Gaussian uncertainties.

In other words, KATRIN’s sensitivity to the neutrino mass can be understood as the
minimal neutrino mass that has to be inferred from a KATRIN neutrino mass measurement
to exclude the null hypothesis of a vanishing neutrino mass [Kle14] when constructing a
classical confidence interval (90 % C.L.). Figure 4.2 illustrates this statement.

For a more comprehensive picture, where not only a classical interval is considered, but
also the unified approach according to Feldman and Cousins as well as Bayesian statistics,
the reader is referred to [Kle+19]. These techniques also allow to interpret KATRIN’s
sensitivity as an upper limit that can be established for the neutrino mass if a vanishing
neutrino mass is measured.

4.6.2. Sensitivity from Ensemble Tests

In the KATRIN Design Report, the sensitivity to the neutrino mass was evaluated using
ensemble tests. An ensemble of many KATRIN measurements was simulated (see section 3.7
on how such a simulation can be conducted) with a true neutrino mass of 0 eV. From each
simulated measurement, the squared neutrino mass was inferred in a standard KATRIN
four-parameter fit (see section 4.3). The central 1-σ interval of the obtained ensemble of
squared neutrino masses was taken as the statistical uncertainty on the squared neutrino
mass [KAT05]

σTDR
stat (m2

ν) = 0.018 eV2 . (4.12)

Five main contributions to the overall systematic uncertainty were identified and estimated
individually, which yielded an overall systematic uncertainty of 0.01 eV2. Due to the
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Table 4.1.: KATRIN’s sensitivity to the neutrino mass from ensemble tests.
The table lists KATRIN’s sensitivity Smν

(90 %) as defined by equation (4.11). Several
works reevaluated the statistical uncertainty according to experimental and theoretical
progress. For each reevaluation, a systematic uncertainty of σTDR

sys (m2
ν) = 0.017 eV2 was

assumed. A value derived from an ensemble test is a random variable. Corresponding
widths of the obtained distributions are reprinted if they were originally stated.

σstat(m2
ν) (eV2) Smν(90 %) (meV) comment reference

0.018 200 design value [KAT05]
0.0165± 0.0001 198 updated β-spectrum calculation [Höt12]
0.0162± 0.0001 197 further updated β-spectrum calculation [Kle14]
0.01490 193 optimized MTD, see section 4.6.3 [Kle14]

early stage of the experiment the systematic uncertainty was conservatively enlarged to a
systematic budget at approximately the same scale as the statistical uncertainty [KAT05]

σTDR
sys (m2

ν) = 0.017 eV2 . (4.13)

Adding the statistic and systematic uncertainty quadratically and applying the defini-
tion (4.11) yields KATRIN’s design sensitivity [KAT05]

STDR
mν

(90 %) =
√

1.645 ·
√
σTDR

stat (m2
ν)2 + σTDR

sys (m2
ν)2 ≈ 200 meV . (4.14)

The corresponding investigations were redone in the scope of several works. Table 4.1 lists
selected results.

4.6.3. Sensitivity using the Profile-Likelihood Method

The approach shown above via ensemble testing yields an ensemble respectively a dis-
tribution of estimated squared neutrino masses. The sensitivity is then derived from
this ensemble. Instead of using an ensemble of inferred squared neutrino masses, also an
ensemble of confidence intervals may be used. This approach is explained in chapter 6.
In order to deduce a confidence interval from a single measurement, the profile-likelihood
method (see subsequent section 6.3.2) may be used, which finds application in the scope of
this thesis.

For comparison with the results from ensemble tests in table 4.1, previous results from [Kle14]
based on the profile-likelihood method are shortly reviewed here: Two uncertainties were
obtained for two different MTDs in a nominal KATRIN four-parameter fit (see section 4.3).
The first MTD had been especially optimized with regard to KATRIN’s sensitivity. The
optimization resulted in enlarged measurement times in four isolated ranges of retarding
voltage bins. These bins offer enhanced leverage on the four fit parameters of a nomi-
nal KATRIN neutrino mass fit and their correlations (for details, the reader is referred
to [Kle14]). The obtained statistical uncertainty was σstat(m2

ν) = 0.014 94 eV2. For the sec-
ond result, the nominal MTD from the KATRIN Design Report (see section 3.6) was used.
The corresponding profile likelihood was plotted for an Asimov data set (see section 6.3.3)
and σstat(m2

ν) can be extracted to be between 0.0155 and 0.0165 eV2. Both results are in
agreement with the results from ensemble tests (see [Kle14] in table 4.1).





5. Energy-Dependence of the Cross
Section for Inelastic
Electron-Scattering within the WGTS

The probability for an electron to scatter when traveling through the WGTS can be
characterized by the total scattering cross section σtot. Two types of scatterings can be
distinguished: elastic and inelastic scattering. The cross section for elastic scattering is
smaller than the one for inelastic scattering by one order of magnitude [Kle+19] (also
see 3.2.5 for a comparison of th cross section values). This chapter focuses on inelastic
scattering and neglects elastic scattering. Within this chapter, the cross section for electrons
scattering inelastically off gas molecules is just denoted as “cross section” and with the
symbol σ. For ease of notation and reading, the adjective “inelastic” and an index such as
“inel” is omitted where the context allows it unambiguously.

The cross section depends on the energy of the incident electrons: σ ≡ σ(E). This
dependence has been neglected in the formal modeling of a KATRIN measurement described
in chapter 3. This chapter investigates effects related to the incorporation of the energy-
dependence. Section 5.1 lists cross section values and formulae from different sources and
relates them to each other. Section 5.2 extends the mathematical formalism for a KATRIN
measurement in order to incorporate the energy-dependence of the scattering cross section.
However, an approximation is made. It is neglected, that an electron that scatters loses
energy and becomes more likely to scatter again. This issue is addressed in section 5.4.
Section 5.3 discusses the energy-dependence of the scattering cross section within the context
of neutrino mass inference using the approximated model. And section 5.5 concludes and
offers an outlook.

5.1. Cross Section Values for Inelastic Electron-Scattering off Molecular
Hydrogen Isotopologues

The goal of this thesis is to investigate to what extend it is important, that the cross
section value is not constant but varies with the energy of the incident electrons. In that
regard, a formula by [Liu87] is used, that is derived from first principles and denotes
the energy-dependent cross section for electrons scattering off hydrogen molecules. This
was found to be a feasible approach for the stated goal - at least for first investigations.
In section 5.1.1, this formula by [Liu87] is reviewed. For electrons with an energy of
ES = 18.6 keV, its application yields

σ(18.6 keV) = 3.667× 10−22 m2 . (5.1)

The formula is in agreement on at least the 10−1 level with recent, preliminary estimations
obtained through data taken at the KATRIN experiment for electrons scattering off tritium
molecules. This hints at its applicability, which is of importance in the light of the following
paragraph.
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The situation regarding cross section values is not without a certain intricacy. The following
list gives an introduction to the matter that shall serve as guidance for the reader:

1. In this work, a theoretical cross section for electrons scattering off hydrogen molecules
is used. During a KATRIN neutrino mass measurement, the WGTS is envisaged to
be filled with gas of 95 % tritium purity [KAT05]. In that regard, the scattering off
tritium molecules is of importance with respect to the KATRIN experiment. How
the formulas for scattering off hydrogen molecules can be transformed to tritium
molecules is under investigation at the time of writing this thesis. Once, this process
is completed, the study presented in this thesis might have to be repeated.

2. The cross section for electrons with an energy of 18.6 keV scattering off tritium
molecules was measured at the neutrino mass experiment in Troitsk to be [Ase+00]

σ(18.6 eV) = (3.40± 0.07)× 10−22 m2 . (5.2)

This value differs by approximately 8 % and 4 standard deviations from the theoretical
value given above in equation (5.1).

3. The KATRIN Design Report lists a reference value [KAT05]

σTDR = 3.456× 10−22 m2 . (5.3)

This value also differs significantly from the theoretical value given above in equa-
tion (5.1). To further complicate the matter, comparability with former results is of
importance in the scope of this thesis and several former works are based on σTDR.
Section 5.1.2 explains why the value of σTDR might be erroneous and how this issue
is addressed in this work.

5.1.1. Theoretical Cross Section Formulae
An expression for the inelastic cross section for electrons scattering off hydrogen molecules
can be found in [Liu73]. Two expressions are given: one for relativistic incident electrons
and one for non-relativistic incident electrons. In regard to KATRIN, the energies of
β electrons from tritium β decay are relevant. The maximum relativistic β factor of
electrons from tritium β decay is

β(E,m) =
√

1− 1
(Em + 1)2 (5.4)

⇒ βmax,T = β(E ≈ 18.6 keV,me ≈ 511 keV) ≈ 0.26 . (5.5)

Traveling at approximately a forth of the speed of light, the β electrons are assumed to
behave non-relativisticly. Then, the given expression for the energy-dependent cross section
is [Liu73]

σ(E) = (4πa2
0) ·

(
T (E)
R

)−1
·
[
C1 · ln

(
T (E)
R

)
+ C2

]
(5.6)

with the Bohr radius1 a0, the Rydberg energy2 R and two constants C1 and C2. The later
two depend on the hydrogen isotopologue. Different values are stated in different works for
scattering off hydrogen molecules

C1 = 1.5487 [Liu73] , (5.7a)

C2 = 2.2212± 0.0434 [Liu73] , (5.7b)
C2 = 1.53 [Ger75] , (5.7c)
C2 = 2.4036 [Liu87] . (5.7d)

1Bohr radius a0 = 0.529 177 210 67(12) × 10−10 m [Tan+18]
2Rydberg energy R = 13.605 693 009(84) eV [Tan+18]
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The latest of these references, [Liu87], acknowledges that the listed values for C2 are not
compatible.

Furthermore, in equation (5.6), T denotes the classical kinetic energy3 using the velocity v
and the electron rest mass me

T = 1
2mev

2 = 1
2mec

2 v
2

c2

≡ T (E) = 1
2mec

2β(E,me)2 (5.8)

with β(E,me) as in equation (5.4)4. This formula is valid in the center-of-mass frame of the
colliding system of the electron and the hydrogen molecule. As the molecule is significantly
heavier than an electron, the center of mass-frame-was assumed to be the rest frame of the
molecule. Also, relative movements due to the gas flow and thermal motion in the WGTS
were neglected.

In the scope of this thesis, equation (5.6) with C2 from [Liu87] (as it is the most up-to-date
of the listed ones) is used to include the energy-dependence of the cross section into the
mathematical formalism of a KATRIN neutrino mass measurement.

In [Liu73], also a formula for incident electrons with relativistic energies is given. As
already mentioned, in this thesis, the β electrons from tritium decay are assumed to behave
non-relativisticly and the formula is only reprinted here for completeness

σ(E) = (4πa2
0) ·

(
T (E)
R

)−1
·
[
1.5487 · ln

(
β(E,me)

1− β(E,me)2

)
+ 17.4615

]
. (5.9)

The quantities T (E), R and a0 match the once in equation (5.6) and β(E,me) follows
equation (5.4). For energies below 18.6 keV the difference of the formula for relativistic
(eq. 5.6) and non-relativistic (eq. 5.9) incident electrons is less than 1 %. To what extend
relativistic effects in the inelastic scattering process could be of relevance for the KATRIN
experiment is not covered in this thesis.

Figure 5.1 shows the theoretical cross-section formulae (5.6) and (5.9) along with the
measured value by the Troitsk experiment and the reference value from the KATRIN
Design Report.

5.1.2. Relation to Cross Section Values Used in Former Works

As already stated and depicted in figure 5.1, the reference cross section from the KATRIN
Design Report does not match the theoretical calculations used in this thesis. Nonetheless,
several former works (see subsequent section 5.3) are based on the reference value. Compa-
rability is of importance in the scope of this thesis (as will become apparent in section 5.3).
How this issue is addressed is explained in the following.

The cross section value stated in the KATRIN Design Report can be recovered from
equation (5.6) if an erroneous energy interpretation is applied. If, instead of equation (5.8),
one applies the energy interpretation

T (E) = E , (5.10)

the obtained cross section via equation (5.6) is

σTDR ≡ σ(ETDR = 18 565 eV) = 3.4559× 10−22 m2 ≈ 3.456× 10−22 m2 (5.11)
3I would like to thank Dr. F. Glück for pointing this out. Also see [Ino71] for notations with regard to
Bethe theory in scattering processes.

4This thesis uses natural units. However, for clarity, it makes sense to explicitly state the speed of light c
in this particular case.
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Figure 5.1.: Inelastic cross section for electrons scattering off molecular hy-
drogen isotopologues. The continuous line shows equation (5.6) for incident electrons
with non-relativistic energies with constants from equation (5.7a) and (5.7d) where the
later is assumed to have an uncertainty according to equation (5.7b). The dashed line
shows equation (5.9) for incident electrons with relativistic energies. Also, the measure-
ment by [Ase+00] at the Troitsk neutrino mass experiment and the value stated in the
KATRIN Design Report [KAT05] are depicted. The shown energy interval is chosen
according to the MTD of the FT measurement campaign.

as stated in the KATRIN Design Report, where the energy ETDR is approximately central
in the KATRIN design analysis interval (see section 3.6). Whether this had been the
approach, that had led to the reference cross section in the KATRIN Design Report is not
known.

This work applies the energy interpretation (5.10) when comparability to former works,
that used the reference cross section from the KATRIN Design Report, is of importance.
Otherwise, equation (5.8) is used. Corresponding indications are given on a case to case
basis. The quantitative difference of these two approaches can be assessed by expanding
the β-factor (5.4) in the ratio E/me ≈ 18.575/511 ≈ 0.036� 1

β2 ≈ 2 E
me
− 3

(
E

me

)2
. (5.12)

The energy interpretation of equation (5.8) then becomes

T (E) ≈ 0.95 · E , (5.13)

which is a shift in energy and hence, in first order, also in the cross section of about 5 %
compared to the interpretation in equation (5.10). Exact calculations are given in table 5.1.

5.2. An Energy-Dependent Scattering Model using the Poisson Distribu-
tion

The energy-dependence of the cross section enters into the calculation of the scattering
probabilities (3.18). In the derivation that is given in the previous section 3.2.4 the
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Table 5.1.: Probability for severalfold electron-scattering in the WGTS. The
probabilities are averaged over all starting positions and starting pitch angles. Both, the
values from a Monte Carlo (MC) particle tracking simulation and the values according
to equation (3.19) are given. The cross section was evaluated at an energy of ETDR =
18 564.374 63 eV for the two energy interpretations described by equation (5.10) and (5.8).
Further input parameters to the calculations are a constant gas column density ρd =
5× 1017 cm−2, a WGTS length of d = 10.0820 m and a maximum acceptance angle
of θmax = 50.7685◦. The values are given with the precision needed to reproduce the
results in the table below in all digits, which is the precision used in SSC. The energy is
chosen such, that σTDR = 3.456 000× 10−22 m2 is recovered in more than 3 digits as per
equation (5.11).

cross section (10−22 m2) → 3.456 3.456 3.673
source → MC particle tracking

[Gro15]
eq. (3.19)
[Gro15; Kle14]

eq. (3.19)

scattering count ↓
0 0.415± 0.002 0.41334 0.39564
1 0.292± 0.002 0.29266 0.28967
2 0.166± 0.001 0.16733 0.17298
3 0.079± 0.001 0.07913 0.08590
4 0.031± 0.001 0.03178 0.03634

dependence on the starting energy ES of electrons is neglected. Instead, an average starting
energy and hence an average scattering cross section

σTDR(ETDR) = 3.456× 10−22 m2 (5.14)

(energy interpretation as per equation 5.10) is assumed. Table 5.1 lists the corresponding
scattering probabilities averaged over all starting positions and pitch angles of electrons.
Additionally, the results of a Monte Carlo particle tracking simulation by [Gro15] and the
values using the energy interpretation of equation (5.8) are given. How, instead of assuming
energy-independent scattering probabilities, the energy-dependence can be modeled is
shown in the following.

5.2.1. Formalism of the Poisson Model for Electron-Scattering

An expression for the probability of l-fold scattering of electrons within the WGTS is
derived in the previous section 3.2.4. The given model is independent of the energy of
the electrons. Instead of using a constant cross section, the energy-dependence can be
respected. The corresponding formulae from section 3.2.4 are repeated below with the
energy-dependence made explicit and by using an energy-dependent cross section as per
equation (5.6)

µ(ES, zS, θS) =σ(ES)
cos θS

∫ d/2

zS
ρ(z) dz , (5.15a)

Pl(ES, zS, θS) =Poisson(µ(ES, zS, θS), l) , (5.15b)

P̄l(ES) = 1
d · (1− cos(θmax))

∫ d/2

−d/2

∫ θmax

0
sin(θS)Poisson(µ(ES, zS, θS), l) dθS dzS .

(5.15c)

As a reminder, P̄l(ES) in equation (5.15c) denotes the probability for l-fold scattering of
an electron with a starting kinetic energy ES averaged over all starting positions and pitch
angles in the WGTS. In the following, this model is denoted “Poisson model”.
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5.2.2. Properties of the Poisson Model for Electron-Scattering
Figure 5.2 shows the Poisson model as per equation (5.15). Table 5.1 lists the scattering
probabilities for an energy-independent Poisson model (see section 3.2.4) and a reference
cross section σ(E ≈ 18 564 eV) = 3.673× 10−22 m. The energy-dependent Poisson model
recovers the energy-independent model exactly at the corresponding energy as expected.

Trend of the Energy-Dependence

As depicted in figure 5.2, for an increasing starting energy of electrons within the WGTS,
the probability for no and one-fold scattering also increases, while the probability for
two-fold scattering decreases. This paragraph aims to give an intuitive argument for this
change of sign in the derivative dP̄l(ES)/dES in the transition from l = 1 to l = 2. The
Poisson model P̄l(ES) is a probability density in l for a fixed ES (see appendix A for a proof).
Hence, the expected scattering count for an energy within the range of starting energies
ES ∈ [17 keV, 18.6 keV], that is depicted in figure 5.2, can be calculated (numerically)

l̄(17.0 keV) =
∞∑
l

P̄l(17.0 keV) · l ≈ 1.23

l̄(18.6 keV) =
∞∑
l

P̄l(18.6 keV) · l ≈ 1.14 .
(5.16)

In other words, electrons with a starting energy between 17 keV and 18.6 keV are expected
to scatter between 1 and 2 times on their way through the WGTS (averaged over all starting
positions and pitch angles). Then, the illustrative line of argument is the following:

the starting energy ES increases
⇒ the scattering cross section decreases (see figure 5.1)
⇒ scattering becomes less likely
⇒ l̄ decreases and moves closer to 1 and away from 2
⇒ the probability for no and one-fold scattering increases,

while the probability for more than one scattering decreases .

This is in accordance with the trend of the energy-dependence depicted in figure 5.2. Also,
if this reasoning is correct, the sign of dP̄1(ES)/ dES for one-fold scattering should change
for sufficiently high energies and the probability to scatter once should decrease. This
is indeed the case as depicted in figure 5.3. The decrease starts at an energy of roughly
24.7 keV. This might for example be of relevance for the measurement of Krypton conversion
lines in calibration measurements because the corresponding electron energies are above
30 keV [Vén+18].

Limit of the Poisson Model for Electron-Scattering

The Poisson model is exact for the probability of no scattering P̄0(ES), but it does not hold
for one or more scatterings because an electron loses energy when scattering. The scattering
cross section increases with decreasing energy (see figure 5.1) and the electron becomes
more likely to scatter again. In other words, the probabilities of individual scattering
processes are no longer independent when respecting the dependence on the electron energy.
This violates one of the preconditions to model the scattering probabilities via a Poisson
distribution. Another model beyond the description via a Poisson distribution is suggested
in the subsequent section 5.4. However, at the current stage, this extended model poses
computational difficulties as is discussed in section 5.4.2. The aim of this thesis is the
assessment of energy-dependent effects. This can already be achieved with the Poisson
model as shown in the previous paragraphs. Therefore, the Poisson model was further used
to address the energy-dependent effects in the scope of neutrino mass inference.
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Figure 5.2.: Probability for severalfold electron-scattering in the WGTS. From
top to bottom, the probability for no, one-fold and two-fold scattering are shown averaged
over all starting positions and starting pitch angles of electrons in the WGTS according to
the Poisson Model in equation (5.15). The shown energy range matches the measurement
range of the FT measurement campaign and the inset shows an energy span around the
endpoint of the tritium β spectrum.
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Figure 5.3.: Probability for one-fold electron-scattering in the WGTS in an
extended energy range. The graph shows the probability of one-fold scattering accord-
ing to equation (5.15c). It emphasizes the change of sign in the derivative at approximately
24.7 keV.
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Implementation and Performance

Within the scope of this thesis, the energy-dependent Poisson model of equation (5.15)
was implemented into the source and spectrum calculation (SSC) software framework. The
energy-dependence of the scattering cross section may not be negligible in neutrino mass
inference as is explained in the subsequent section 5.3. For that reason, the impact on the
fitting run time by using an energy-dependent cross section was probed. Depending on the
MTD, a fit might become slower by a factor of 40 to 120. This is due to the fact, that, when
integrating over the energy loss in the response function in equation (3.29), the scattering
probabilities have to be recomputed in every step of the numerical integration. It might be
beneficial to investigate whether the evaluation can be speed up in the future. For example,
it might be sufficient to only compute the energy-dependent scattering probabilities for a
limited set of energies and interpolate them in-between those energies.

5.3. Effects of Systematic Cross-Section Offsets in Neutrino Mass Infer-
ence

It was investigated, how much the squared neutrino mass that is inferred from a KATRIN
measurement would be shifted if the energy-dependence of the scattering cross section is
neglected in the corresponding fitting procedure. The comparability to former results is of
importance within this section. For that reason, the energy interpretation of equation (5.10)
is used, which yields a cross section of σTDR = 3.456× 10−22 m2 at an energy of 18 565 eV
within the KATRIN design analysis interval. There are several previous works that
studied similar effects [Ant15; Gro15; Sei19; Kuc16; Kuc+18]. In section 5.3.1, the results
from [Gro15] are reviewed representatively for the mentioned works because they might
intuitively contradict the results obtained in this thesis. In section 5.3.2, the results of this
thesis are listed. And in section 5.3.3, an argument is given, why both sets of results are
assumed to be in accordance.

5.3.1. Neutrino Mass Shifts for an Energy-Independent Cross-Section Off-
set from Former Works

In [Gro15], it was investigated how much a constant offset of the cross section would shift
the inferred squared neutrino mass if the offset were neglected in the analysis. A rule of
thumb for the shift in dependence on the relative offset of the cross section ∆σ/σTDR is
given [Gro15]

∆m2
ν(∆σ)

10−3 eV2 = −0.45− 1204 · ∆σ
σTDR

with σTDR = 3.456× 10−22 m−2 . (5.17)

This rule of thumb was deduced via a linear approximation of several neutrino mass shifts
in dependence of the relative cross section offset. Although, it can only be used for rough
estimations, it serves well for the discussion in the following sections. Using the energy
interpretation of the KATRIN Design Report (eq. 5.10) and the numerical inversion of
the cross section formula (eq. 5.6), in the KATRIN design analysis interval of 30 eV, the
relative offset of the cross section caused by the energy-dependence is∣∣∣∣ ∆σ

σTDR

∣∣∣∣ < 0.1 % . (5.18)

Thus, the rule of thumb (5.17) yields∣∣∣∆m2
ν(∆σ)

∣∣∣ < 2× 10−3 eV2 (5.19)

within the KATRIN design analysis interval of 30 eV.
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Figure 5.4.: Shift of an inferred squared neutrino mass induced by a neglected
energy-dependence of the inelastic scattering cross section. The neutrino mass
was inferred from data that was simulated using an energy-dependent inelastic scattering
cross section as per equation (5.6) (with an energy interpretation according to equa-
tion (5.10) for compatibility with the KATRIN Design Report) and using a nominal four-
parameter fit model that assumes a constant cross section of σTDR = 3.456× 10−22 m2.
The procedure was repeated for five different measurement intervals (respectively MTDs)
[E0 − α,E0 + 5 eV] based on the KATRIN Design Report where α is denoted on the
abscissa and E0 = 18 575 eV is the endpoint of the β spectrum. The MTDs are listed in
appendix B. The markers show the results for the obtained shift of the squared neutrino
mass and the dotted line is an interpolation in-between. The study was done once with
a free fit parameter for the endpoint and once having it fixed to the simulation truth
in order to show the influence on the sign of the shift of the squared neutrino mass (for
details refer to the main text).

5.3.2. Neutrino Mass Shifts for an Energy-Dependent Cross-Section Off-
set

In the scope of this thesis, an energy-dependent offset of the cross section was investigated
(in contrast to a constant one in [Gro15]). A KATRIN neutrino mass measurement for a
neutrino mass of 0 eV was simulated using an energy-dependent cross section5. A model
that uses a constant cross section was fitted to the simulated spectrum. This procedure
was repeated for five different MTDs of different measurement intervals. Figure 5.4 shows
the results. For the KATRIN design measurement interval of 30 eV, the difference from
0 eV, respectively the shift of the squared neutrino mass, is

∆m2
ν = 1.09× 10−2 eV2 . (5.20)

First, it should be noted that this value is greater by a factor of ∼ 5 than the one stated
above in equation (5.19), that was estimated using the results from [Gro15]. This issue is

5In all studies presented in this chapter, the simulated electron detector counts were substituted by their
expectation values as opposed to fluctuated according to Poissonian statistics. In other words, no
ensemble testing was done. For more details on such an Asimov data set and why it can reasonably be
assumed to be representative for an ensemble, see section 6.3.3.
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addressed in the subsequent section 5.3.3. Further aspects are discussed in the following
paragraph:

Sign of the Shift of the Squared Neutrino Mass

Using an energy-dependent cross section in the simulation and neglecting it in neutrino
mass inference yields a higher β electron count in the endpoint region than expected (see
figure 5.6) because the cross section decreases with higher energies and electrons of higher
energies are less probable to scatter. On one hand, a higher β electron count for energies in
the endpoint region of the β spectrum can be caused by a lower squared neutrino mass. On
the other hand, a higher β electron count can also be caused by a higher endpoint of the β

spectrum. These two effects counterbalance each other, which makes it difficult to make
an intuitive, qualitative statement about the sign of the shift of the squared neutrino mass.
As shown in equation (5.20), the shift of the squared neutrino mass is positive. However, if
the above reasoning is correct, then one should obtain a flip in the sign of the shift if the
endpoint is not taken as a free fit parameter, but fixed to the simulation truth. Figure 5.4
shows that this is indeed the case.

Significance for the KATRIN Experiment

The shift of the squared neutrino mass in equation (5.20) takes a sizable fraction of the
systematic budget of 1.7× 10−2 eV2 (see eq. 4.13) of the KATRIN experiment, but is still
smaller. Hence, whether the effect of the energy-dependence of the scattering cross section
can be neglected depends on the contribution of other systematic effects and can not yet
fully be assessed (see for example [Sei19] for a comprehensive list of systematic effects with
regard to the KATRIN experiment).

It should be mentioned that KATRIN’s design allows to measure the product of the gas
column density and the inelastic scattering cross section ρd · σ(E) for a fixed electron
energy E using the electron gun. In order to respect the energy dependence of the cross
section, it is necessary to incorporate a corresponding model, such as the formula for the
energy-dependent cross section (eq. 5.6). This might enable the measurement of the two
constants C1 and C2 in said formula. Therefore, electron spectra have to be recorded
for multiple energies E. Such measurements were already conducted at the KATRIN
experiment. However, results that respect the energy-dependence of the scattering cross
section in the way described here are not yet available at the time of writing this thesis.
But a corresponding analysis should be possible.

5.3.3. Relation of the Shifts for an Energy-Dependent and -Independent
Cross-Section Offset

In the scope of this thesis, the shift of an inferred neutrino mass that is introduced by
neglecting the energy-dependence of the cross section was investigated. Former works
investigated the shift when neglecting a constant offset of the cross section. The shift
obtained in this thesis in equation (5.20) is ∼ 5 times larger than the one obtained by the
former study in [Gro15] under equation (5.19), although the energy-dependent offset of the
cross section is never greater than the constant offset investigated by [Gro15]. This might
be contra intuitive, but a possible explanation is the following: The fit parameter for the
signal amplitude AS in a nominal KATRIN fit (see section 4.3) can partly compensate for a
constant offset of the cross section. However, it cannot compensate for an energy-dependent
one equally well. This is demonstrated below:

The study from [Gro15] was reproduced with a free fit parameter for the signal amplitude AS.
The reproduced study was in accordance with the values in [Gro15]. Then, AS = 1 was fixed.
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Figure 5.5.: Shift of an inferred squared neutrino mass induced by a neglected
constant offset of the inelastic scattering cross section. The neutrino mass was
inferred from data that was simulated using different constant inelastic scattering cross
sections. The abscissa shows the offset of the used inelastic scattering cross section
relative to σTDR = 3.456× 10−22 m2, which was used in the assumed fit model. In an
energy-dependent scenario, a cross section corresponds an energy of incident electrons as
per equation (5.6). The cross section range, that corresponds the design KATRIN analysis
energy interval of 30 eV is depicted as a gray band (energy interpretation as per eq. 5.10).
The analysis was done twice: once with a free parameter for the signal amplitude, which
reproduced the results given in [Gro15] (figure 6.31 on page 221); the second analysis
had this parameter fixed. The shift obtained for ∆σ/σTDR ≈ −0.1 % and a fixed signal
amplitude is greater than the shift obtained when neglecting the energy-dependence of
the cross section within the 30 eV measurement interval (depicted by the horizontal line).

The results are shown in figure 5.5. A relative cross section offset of |∆σ/σTDR| ≈ 0.1 %
(see equation 5.18) yields a shift of the squared neutrino mass, that is larger by almost
an order of magnitude with a fixed AS as opposed to leaving AS as a free parameter.
The shift is then greater than the one obtained in the study presented in the previous
section 5.3.2 that uses an energy-dependent cross section in the 30 eV measurement interval.
This verifies, that the fit parameter for the signal amplitude AS can partly compensate for
a constant offset of the cross section.

Additionally, the following plausibility argument can be given: Figure 5.6 shows the
simulated integral rate for different cross section models normalized to the integral rate
obtained by using the model with a constant cross section σTDR from the KATRIN Design
Report. The integral rates that are based on a model with a constant, energy-independent
cross section differ from each other by almost a constant factor (variations < 2× 10−4).
This implies, when one of these models is used in a simulation of a KATRIN measurement
and another model is used in a corresponding fit for neutrino mass inference, their difference
can be compensated by the fit parameter for the signal amplitude AS. However, the model
that uses an energy-dependent cross section differs from the one with the constant cross
section σTDR by a factor that varies over the energy range. Such a difference can not be
compensated by the fit parameter for the signal amplitude AS.
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Figure 5.6.: Simulated integral β-electron rate using different models of the
cross section for inelastic electron-scattering. The abscissa shows the energy range
of the design KATRIN analysis interval of 30 eV. The lines show the integral rate of
β electrons for different models for the inelastic scattering cross section normalized to the
model that uses the constant cross section σTDR = 3.456× 10−22 m2. The gray lines use
a model with a constant cross section. The cross section values can be identified with
electron energies as per equation (5.6) and the energy interpretation of equation (5.10) with
σ(E0−30 eV = 18 545 eV) = 3.459× 10−22 m2 and σ(E0 = 18 575 eV) = 3.454× 10−22 m2.
The black line shows the simulated integral rate for an energy-dependent cross section.
This graph emphasizes that the integral rates for models using a constant cross section
differ by an almost constant factor, whereas the rate using an energy-dependent cross
section differs from the others by a varying factor.

5.4. An Energy-Dependent Scattering Model beyond Using the Poisson
Distribution

In the previous section 5.2 the scattering probabilities are modeled using a Poisson dis-
tribution. This introduces an error for the following reason: A scattering electron loses
energy. The scattering cross section increases with decreasing energy (see figure 5.1) and
the electron becomes more likely to scatter again. In other words, the probabilities of
individual scattering processes are not independent when respecting the dependence on the
electron energy. This violates one of the preconditions to model the scattering probabilities
via a Poisson distribution.

This section aims to quantify the error that is introduced by the approximate modeling via
a Poisson distribution. Another model is suggested6 in section 5.4.1 that partly accounts for
the energy loss of electrons in the formalism of the scattering probabilities. The suggested
model was evaluated numerically as it includes one limit and two integrals that could
not yet be solved analytically. The numerical accuracy had to be good enough to decide
whether it differs significantly from the Poisson model or not. At the same time, a balance
between the numerical accuracy and the evaluation run time had to be found. This matter

6The idea was inspired by a model in [Gro15] that incorporates changes of the electron pitch angle due to
scattering.
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is described in detail in section 5.4.2. The results of the numerical evaluation are discussed
in section 5.4.3.

5.4.1. Formalism of the Extended Model for Electron-Scattering

In the following, a model for the probability of electron-scattering in the WGTS that
depends on the electron energy is derived. The difficulty lies in the fact, that an electron
that scatters loses energy and hence its probability to scatter a second time is different
from the first time. The presented model assumes the same fixed energy loss ε for each
scattering in contrast to a realistic distribution as given by the energy loss function (see
figure 3.3). This was sufficient to show a difference in the Poisson model and the model
suggested below. However, a more accurate description would incorporate the full energy
loss function. This may be the subject of a future study.

The aim of this section is the derivation of an expression P̄ ?l (ES) that denotes the probability
of l-fold scattering for an electron with a starting energy ES averaged over all starting
positions and pitch angles assuming a fixed energy loss ε per scattering.

The expected amount of scatterings for an electron when traveling through the whole
WGTS volume of length d filled with a gas of constant density ρ is (see equation 3.17)

µ(E, θS) = σ(E)ρd
cos θS

, (5.21)

where E denotes the electron’s kinetic energy; θS the starting pitch angle; and σ(E) the
energy dependent scattering cross section. It should be noted that the energy E is denoted
without and index S here, because, in the following, this formula is reused for different
electron energies, not only for the starting energy of an electron.

In the following, the volume of the WGTS is thought of being divided into N slices of equal
width w = L/N (and later the limit N →∞ is applied). N is chosen sufficiently large that
the probability for an electron to scatter twice within one slice is essentially zero. Then,
for large N , the probability to scatter within one slice is µ(E, θS)/N . The probability not
to scatter within n ≤ N slices is

p0(E, θS, n) =
(

1− µ(E, θS)
N

)n
. (5.22)

Let “Poisson(µ,l)” denote the Poisson distribution with expectation value µ and evaluated
at l. Using the well known limit for the Euler constant, one obtains for n = N and N →∞
that p0 is a Poisson distribution with the expectation value µ from equation (5.21) and
evaluated at l = 0

lim
N→∞

p0(E, θS, N) = lim
N→∞

(
1− µ(E, θS)

N

)N
= e−µ(E,θS) = Poisson(µ(E, θS), 0) . (5.23)

In other words, for no scattering, the Poisson model for the scattering probabilities as
described in section 5.2 is recovered.

Assuming a constant energy loss ε per scattering, the probability to scatter l > 0 times
within n < N slices can be expressed recursively

pl(E, θS, n) =
n∑
k=l︸︷︷︸
(4)

pl−1(E, θS, k − 1)︸ ︷︷ ︸
(1)

(1− p0(E − (l − 1)ε, θS, 1))︸ ︷︷ ︸
(2)

p0(E − lε, θS, n− k)︸ ︷︷ ︸
(3)

.

(5.24)
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The idea behind this expression is the following: One imagines an electron with an energy
E that travels through n WGTS slices, scatters l times in total and the last time in the
kth slice. Hence, it must have scattered l − 1 times in the k − 1 slices before the kth slice
and must not scatter in the n− k slices to follow. In that regard, the above expressions
have the following meaning:

(1) Probability to scatter l − 1 times within k − 1 slices with a kinetic energy of E.

(2) Probability to scatter once within the kth slice with a kinetic energy of E − (l − 1)ε.

(3) Probability not to scatter within the remaining n− k slices with a kinetic energy of
E − lε.

(4) Sum over all slices k where the electron could scatter the last time. The sum starts
at l (as opposed to 1) because the probability to scatter l − 1 times within less than
k = l − 1 slices (term (1)) is 0 due to the made assumption, that in the limit of a
large amount of slices N an electron does not scatter twice within one slice.

The probability to scatter l times can be averaged over all starting positions of electrons
respectively starting slices. In this regard, nS denotes the amount of slices an electron
has to pass through depending on its starting slice (including its starting slice). Then the
average is

p̄l(E, θS) = 1
N

N∑
nS=1

pl(E, θS, nS) ≈ 1
d

∫ d

0
pl(E, θS,

⌈
N
zS
d

⌉
) dzS . (5.25)

Here, the averaging sum is approximated by an integral as this helps cutting down on run
time in a numerical evaluation. This is due to the fact, that in a numerical evaluation a
large number N (∼ 105) of slices has to be chosen and the sum would have many terms.
However, a numerical integration can achieve an accurate result with a smaller set of
supporting points (see subsequent section 5.4.2).

Then, the limit N →∞ can be applied

P ?l (ES, θS) = lim
N→∞

p̄l(ES, θS) . (5.26)

P ?l (ES, θS) denotes the probability for an electron to scatter l times when traveling through
the whole WGTS with a starting energy ES and pitch angle θS averaged over all starting
positions. Finally, this expression can be averaged over all starting pitch angles in order to
obtain the energy dependent scattering probabilities

P̄ ?l (ES) = 1
1− cos θmax

∫ θmax

0
sin θSP

?
l (ES, θS) dθS . (5.27)

P̄ ?l (ES) denotes the probability for l-fold scattering of an electron with a starting energy
ES averaged over all starting positions and pitch angles assuming a fixed energy loss ε per
scattering. In the following, this model is called the “extended model”.

5.4.2. Numerical Accuracy and Cross-Check of the Extended Model for
Electron-Scattering

For the evaluation of the energy-dependent scattering probabilities according to the extended
model in equation (5.27) the fixed energy loss ε = 12.6 eV per scattering was chosen as it is
the most probable energy loss for electrons traveling through tritium gas (see figure 3.3).
The mean value would also have been a possible choice. But the energy loss function
as depicted in figure 3.3 is not normalized to [0,∞), which poses the problem of finding
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a suitable energy interval, with respect to which the mean value is calculated. In other
words, at the current stage, a certain arbitrarity concerning the choice of the energy loss
per scattering could not be avoided. As already mentioned, a future study might consider
a more comprehensive incorporation of the energy loss function.

The extended model in equation (5.27) was evaluated numerically:

• Taking the limit N →∞ in equation (5.26) was replaced by choosing a large N .

• The averaging integral over the starting positions in equation (5.25) and starting
pitch angles in equation (5.27) were computed using Gaussian quadrature.

The extended model was introduced because the preconditions to model the scattering
probabilities via a Poisson distribution (Poisson model) do not hold. Hence, the numerical
evaluation of the extended model must be sufficiently accurate to show the difference to
the Poisson model. How accurate this is was not known beforehand and was found out
by trial and error. Both, N and the order of Gaussian quadrature, should be chosen as
low as possible to cut down on calculation run time, but sufficiently high for the required
accuracy.

A benchmark had to be found in order to determine the accuracy of the numerical evaluation.
The following two ideas were used: First, for an energy loss of ε = 0 eV per scattering, the
extended model must recover the Poisson model exactly. This can be used to estimate
the numerical accuracy in dependence of the number N of slices and order of Gaussian
quadrature. The estimated accuracy when using ε = 0 eV may then be assumed for
evaluations when ε > 0 eV. Second, a further cross-check is the convergence of the
numerical evaluation with increasing N and an increasing order of the Gaussian quadrature.
Both ideas find application below.

The averaged probability for one-fold scattering P̄ ?1 of the extended model was evaluated
for ε = 0 eV. The result is shown in the top row of figure 5.7 in dependence of N and the
order of the Gaussian quadrature. It should recover the Poisson model. For N = 5× 105

and using Gaussian quadrature of order 5, the Poisson model and the extended model differ
less than 3× 10−6. The calculations for ε = 12.6 eV are shown in the lower row of figure 5.7.
They also show convergence on the 10−5 level. Conclusively, the results make it plausible
to assume a numerical accuracy on the 10−5 level or better for N = 105 and using Gaussian
quadrature of order 5 for the integrals. Using this configuration, the extended model for
one-fold scattering was numerically evaluated for different electron starting energies. The
result is depicted in figure 5.8. It was found that the extended model and the Poisson
model differ by approximately 10−4. Hence, the numerical accuracy on the 10−5 level is
sufficient to show the difference of these two models.

The corresponding run time to compute P̄ ?1 is in O(N) as it requires a sum over all N slices
in equation (5.24). The extended model is defined recursively and therefore the run time
for l-fold scattering is in O(N l). Hence, computing the probability for two-fold scattering
would take 5× 105 times as long as for one-fold scattering for the same 10−5 accuracy. This
was not yet found to be feasible.

The results of the numerical evaluation for one-fold scattering are discussed in the subsequent
section 5.4.3.
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Figure 5.7.: Accuracy of the numerical evaluation of the extended model of
the probability for electron-scattering in the WGTS. The extended model is given
by equation (5.27) and the Poisson model is given by equation (5.15). For both models,
the energy of the incident electrons was taken such that the Poisson model yields the
values already given in table 5.1. The left column shows the dependence on the number N
of slices of the WGTS. The right column shows the dependence on the order of Gaussian
quadrature that was used to evaluate the two integrals in the extended model. The
Poisson model is independent of these features and can be evaluated exactly (limited
by machine number precision). In the left column, the order of Gaussian quadrature
was fixed to 5 and in the right column, the number of slices was fixed to 5× 105. The
upper row shows the numerical evaluation of the extended model for no energy loss per
scattering (markers). Its exact solution is given by the Poisson model (line). The lower
row shows the extended model for an energy loss of 12.6 eV per scattering. The upper
row shows that the numerical evaluation of the extended model is within a distance of
less than 3× 10−6 of its exact solution and the lower row shows convergence on the 10−5

level. These results make it plausible to assume a numerical accuracy on the 10−5 level
or better for the shown configurations of the numerical evaluation of the extended model.
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5.4.3. Discussion of the Extended Model for Electron-Scattering

For no scattering, the extended model and the Poisson model are equivalent as shown in
equation (5.23).

Figure 5.8 depicts the Poisson model as per equation (5.15) and the extended model as per
equation (5.27) for the probability of one-fold scattering. The difference between the two
models is below 10−4.

For two-fold scattering and higher scattering multiplicities the extended model could not
yet be evaluated due to the computational complexity. However an estimation based on
theoretical arguments is given below.

Difference of the Extended and the Poisson Model for Electron-Scattering

The reasoning concerning the sign of the difference between the Poisson and the extended
model is similar to the one in section 5.2 about the change of the scattering probabilities
with decreasing or increasing energy: The Poisson model underestimates the total amount
of scattering, because it neglects that an electron that scatters loses energy and becomes
more likely to scatter again. As already shown, according to the Poisson model, electrons
are expected to scatter between one and two times when traveling through the WGTS (see
equation 5.16). The extended model is more correct than the Poisson model and hence
should yield an increased expected amount of scattering. Therefore, the probability for
one-fold scattering should be smaller than the one given by the Poisson model (this is
the case as depicted in figure 5.8). For higher scattering multiplicity (which could not be
calculated), the sign of the difference between the Poisson and the extended model should
be the opposite. In other words, the probability of two-fold scattering as given by the
Poisson model should be to low.

Also, the extended model should be a probability distribution and the sum over all scattering
multiplicities should yield unity in the same manner as it does for the Poisson model (see
appendix A for a proof that the Poisson model is a probability density). This means
that for higher scattering multiplicities, the difference between the extended model and
the Poisson model would have to sum up to the difference in the probability for one-fold
scattering. Hence, for scattering of higher multiplicity, the absolute difference between the
extended model and the Poisson model would not be able to surpass 10−4.

The Extended Model for Electron-Scattering in Neutrino Mass Inference

How the error of the Poisson model propagates to neutrino mass inference and whether it
would introduce a significant systematic shift of the squared neutrino mass was not probed in
the scope of this thesis because the current stage of the extended model is computationally
too demanding to be used in a fitting procedure. However, some considerations are given
below:

The difference between the extended model and the Poisson model for one-fold scattering
is ∼ 10−4, which might be a significant scale because it is similar to the scale on which the
probability for one-fold scattering changes when transitioning from an energy-independent
to an energy-dependent cross section (see insets of figure 5.2). In the previous section 5.3.2,
it is shown that neglecting such an effect might lead to a systematic shift of the squared
neutrino mass on the order of 10−2 eV2. Nonetheless, the difference of the extended and
the Poisson model might be partly compensated by the different fit parameters such as the
signal amplitude or the endpoint of the β spectrum. Therefore, it was found difficult to
make quantifiable assumptions.

In the following, a procedure is outlined, that might make it possible to estimate the
induced systematic shift of the squared neutrino mass in a future study: One could simulate



Chapter 5. Energy-Dependence of the Cross Section for Inelastic Electron-Scattering
within the WGTS 63

17000 17200 17400 17600 17800 18000 18200 18400 18600
starting energy of an electron (eV)

0.284

0.285

0.286

0.287

0.288

0.289

0.290
pr

ob
ab

ilit
y 

to
 sc

at
te

r o
nc

e
Poisson model
extended model

18540 18560 18580
0.2895

0.2896

0.2897

Figure 5.8.: Comparison of the Poisson and the extended model for one-fold
scattering of electrons in the WGTS. The line shows the Poisson model and the
markers the extended model (see main text for a description of the models). Due to long
program run times, the latter was only evaluated at a selection of energies. Furthermore,
the numerical evaluation of the extended model is subject to an error of ∼ 10−5 (see
section 5.4.2), that is depicted as uncertainty bars. The difference of the two models is
∼ 10−4.

data using the Poisson model and additionally introduce an artificial negative shift on the
order of 10−4 on the probability for one-fold scattering and a positive shift that is smaller
than 10−4 for the probability for scattering of higher multiplicities because this should
approximately resemble the extended model. The fit model can then use the Poisson model
without modification. This procedure might make it possible to quantify whether there is
a significant shift of the inferred squared neutrino mass caused by neglecting that electrons
become more likely to scatter again if they have already scattered.

5.5. Conclusion and Outlook

The cross section for inelastic scattering off tritium molecules within the WGTS depends
on the energy of the incident electrons. An approximated model that applies the Poisson
distribution (Poisson model) was used to estimate the systematic shift on the squared
neutrino mass that would be introduced if the energy-dependence were neglected. The
shift would be ∆m2

ν = 1.09× 10−2 eV2 in a 30 eV analysis interval below the endpoint of
the β-tritium spectrum. However, the Poisson model can be used in neutrino mass analysis
and hence a corresponding systematic shift can be avoided.

It was also shown that including the energy-dependence in neutrino mass inference via
the Poisson model increases the run time of the fitting procedure by a factor of up to
140 depending on the MTD. A suggestion for an improvement of the performance via
interpolation of the scattering probabilities is made in section 5.2.2.

The usage of the Poisson model underestimates the total amount of scattering because it
neglects that an electron that scatters loses energy and becomes more likely to scatter again.
This does not influence the probability for no scattering. However, using the approximation
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of a fixed energy loss ε = 12.6 eV per scattering, it could be shown that the probability for
one-fold scattering would be shifted by less than 10−4. The effect on scatterings of higher
multiplicities or the effect in neutrino mass inference could not be fully quantified, but an
approach that might enable the quantification in the future is outlined in section 5.4.3.

The model building in this chapter was based on well argued considerations. Nonetheless,
an independent cross-check is recommended. A future study might perform a Monte
Carlo particle tracking simulation in order to verify the suggested models presented in this
thesis.



6. Statistical Methods in the Context of
the Empirical Energy Loss Model
Derived from KATRIN Data for
Electrons Scattering Inelastically off
Deuterium

A quantitative accurate description of the scattering processes of β electrons within
KATRIN’s gaseous tritium source is of crucial importance for KATRIN’s sensitivity goal.
In modeling the corresponding effects, the energy loss function (see section 3.2.5) plays
an important role. The KATRIN Design Report states that the precision of the energy
loss functions from literature is not sufficient for KATRIN’s envisaged sensitivity. It was
planned to deduce a sufficiently accurate model from data taken at KATRIN [KAT05]. In
that regard, a preliminary model has successfully been established for electrons scattering
off deuterium molecules based on data taken in October 2018 by a designated subgroup of
the KATRIN collaboration. In the following, this model is referred to as the “KATRIN
model” or the “KATRIN energy loss model”. This preliminary energy loss model has
partially improved uncertainties with respect to the model by [Ase+00], that is presented
in the previous section 3.2.5, and which was used in many previous works [Gro15; Kle14;
Kle+19; Sei19]. In the following, the latter model is referred to as the “Aseev model” after
the primary author of the corresponding publication [Ase+00]. In addition to the improved
uncertainties, the KATRIN model also exhibits features not present in the Aseev model
but motivated by data (see section 6.1 and figure 6.1).

As the uncertainties associated with the energy loss function influence KATRIN’s sensitivity
to the neutrino mass, it is of importance to probe the KATRIN energy loss model in
neutrino mass inference and provide corresponding feedback to the team that measures it.
Beyond that, the implementation of the required statistical tools into the available software
frameworks is of general interest as the approach taken in the scope of this thesis may be
applied to other model uncertainties, not only to the ones stemming from the energy loss
function.

This chapter is structured as follows: Section 6.1 outlines the KATRIN energy loss model.
Section 6.2 discusses the scope of the validity of this study; for example what is expected
of the comparison of a model for electrons scattering off deuterium and another model
for scattering off tritium molecules. Section 6.3 introduces statistical tools for uncertainty
treatment within neutrino mass inference. Special emphasis is put on the use of additional
free fit parameters to mitigate systematic effects. These methods find application in
section 6.4 in order to evaluate systematic effects as induced by the energy loss model. And
section 6.5 concludes and offers an outlook.

65
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6.1. The Empirical KATRIN Energy Loss Model

The KATRIN energy loss model was established by a designated subgroup of the KATRIN
collaboration. It is partly of empirical nature and partly based on first principles. The
model was fitted to data taken at the KATRIN experiment in Fall 2018. A description and
a parametrization is given in the following. Section 6.1.1 describes the KATRIN energy
model itself and section 6.1.2 describes the fit it was obtained from because there are
further fit parameters that can not necessarily be neglected in the uncertainty treatment.
It should be noted, that a unified notation for the KATRIN energy loss model has not
yet been established and that the notation in this thesis was chosen without following any
reference in particular.

6.1.1. Description and Parametrization of the KATRIN Energy Loss Model

In the preceding section 3.2.5, the energy loss function f1(ε) is introduced. It denotes the
probability density for an energy ε that an electron loses when scattering once (inelastically
in the current context). The KATRIN model is such an energy loss function.

The KATRIN model distinguishes two types of energy losses when an electron scatters
inelastically off a gas molecule [Pre-Han19-2]. The first type is the excitation of electron
states within the target molecule for impact energies below the ionization energy of
deuterium Eion,D2 = 15.467 eV [Shi+93]. The second type is the ionization of the target
molecule for impact energies above Eion,D2 . The most probable energy losses are among the
ones caused by the excitation of electronic states. In other words, the KATRIN model has
a peak around these energies between approximately 12 eV and Eion,D2 . In the following,
this peak is denoted as the “excitation peak”. Also, the part of the KATRIN model for
energies above Eion,D2 is denoted “ionization tail”.

The excitation peak is empirically modeled by a sum of three scaled Gaussian distributionsN.
This finds inspiration in the three contributions to the vibrational molecular hydrogen states
by the Lyman band, the Werner band and higher terms [Pre-Han19-1] (also see [Gei64]).
The excitation peak region f emp

exit is described by nine parameters πeloss which comprise the
three scales Ai, means mi and standard deviations si (i ∈ {1, 2, 3}) of the three Gaussian
distributions [Pre-Han19-2]

πeloss = (A1,m1, s1, A2,m2, s2, A3,m3, s3)T , (6.1)

f emp
exit (ε | πeloss) =

3∑
i=1

Ai ·N(ε, µ = mi, σ = si) . (6.2)

The second part, the ionization tail, follows a modified version of the binary-encounter-
dipole (BED) model. For the mathematical expression, the reader is referred to [KR94].
Here, this part will be denoted

fBED
ion (ε) . (6.3)

The BED model is valid for scattering off hydrogen molecules. Therefore, it depends
on the ionization energy of hydrogen. The corresponding value was exchanged for the
one of deuterium Eion,D2 . Whether further modifications with regard to the difference in
isotopologues are necessary is currently under investigation. Furthermore, the constant
normalization factor of the BED model was removed for the following reason: The transition
between the two parts, the excitation peak and the ionization tail, is introduced at the
ionization energy of deuterium Eion,D2 and in order for the transition to be continuous, a
scaling factor for the ionization tail is included

S(πeloss) = f emp
exit (Eion,D2 | πeloss)

/
fBED

ion (Eion,D2) . (6.4)
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Then, the full parametrization for the KATRIN model reads [Pre-Han19-1]

fKATRIN
1 (ε | πeloss) =


0 if ε < 0
f emp

exit (ε | πeloss) if 0 ≤ ε ≤ Eion,D2

S(πeloss) · fBED
ion (ε) if ε > Eion,D2

. (6.5)

Figure 6.1 shows the KATRIN model in comparison to the Aseev model. They are not
expected to be fully compatible within their uncertainties as they describe the scattering
off two different hydrogen isotopologues. For a comparison of the presented KATRIN
model with an energy loss model for deuterium from literature, the reader is referred
to [Pre-Rod19]. Two of the three Gaussian distributions in the excitation peak region
overlap in a way, that they are not distinguishable in the given plot scale. However,
one Gaussian forms a second visible, smaller peak in the excitation region which is a
feature that is not present in the Aseev model. As the KATRIN model is still in its early
stages, this work refrains from a detailed physical interpretation and instead focuses on
uncertainty propagation. For a more detailed physical interpretation, the reader is referred
to the KATRIN documents [Pre-Rod19; Pre-Han19-1; Pre-Han19-2]. With respect to the
uncertainties, the KATRIN model shows an improved uncertainty in the ionization tail
and also in large parts of the excitation peak compared to the Aseev model. How this
propagates within neutrino mass inference is investigated in this chapter.

6.1.2. Nuisance Parameters that Further Influence the KATRIN Energy
Loss Model

The uncertainties of the KATRIN model as evaluated at the time of writing this thesis can
be divided into two sets: The KATRIN model itself comprises nine parameters (eq. 6.1).
Moreover, the model was obtained in a 15-parameter fit. The other six fit parameters are
correlated with the parameters of the KATRIN model and hence are not necessarily negligible
with regard to uncertainty treatment. In the scope of this thesis, they were incorporated in
the statistical treatment of the uncertainties. Whether they may be negligible or can be
treated in a simpler fashion in future studies needs further investigation.

For a the full fitting procedure of the KATRIN model to the recorded data, the reader is
referred to [Pre-Han19-1], but a description of the further six fit parameters is given in the
following. In order to outline their meaning, an overview of the used data sets is required.
Four integral spectra were recorded analogously to the described integral β spectrum in
chapter 3, but with the electron gun (see section 2.3) as electron source instead of tritium.
For each data set a different deuterium column density (see section 2.2) was set in the WGTS:
0 %, 15 %, 50 %, 100 % of the nominal column density of ρd = 5× 1017 molecules/cm2. The
fit model for the 15 %-measurement was rescaled with respect to the other measurements
because the respective data set underwent a different preprocessing than the others. The
corresponding scaling factor Nint,15 was a free fit parameter. A further scaling factor NK
for the KATRIN model was introduced in the fit as a free parameter in order for the
whole KATRIN model to be normalized to unity. Additionally, a fifth data set recorded
at 15 % column density in a time-of-flight mode (see [Bon+99]) was fitted simultaneously.
For each data set, a different expected scattering count µtof,15, µint,15, µint,50, µint,100 (see
eq. 3.17) was fitted, which adds four further parameters (there is no scattering for the 0 %
measurement). In summary, the additional parameters in the fit of the KATRIN model are

πeloss+ = (NK, µtof,15, µint,15, µint,50, µint,100, Nint,15)T . (6.6)

The MLEs, the estimated standard deviations and the estimated correlation matrix of the
full 15-parameter set (πeloss and πeloss+) can be found in appendix D. The aim of this
chapter is to study the impact of the estimated uncertainties from these 15 parameters on
KATRIN’s sensitivity to the neutrino mass.
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6.2. Scope of the Conducted Study

This section lists considerations that should be kept in mind with regard to the study
presented in this chapter.

During a neutrino mass measurement, the nominal tritium purity in the WGTS is planed
to be above 95 % [KAT05]. In this chapter, a sensitivity study is presented that uses
an energy loss model for scattering off deuterium molecules. Within the scope of this
thesis, the treatment of the uncertainties of the KATRIN energy loss model in neutrino
mass inference is of primary interest. Two different, but similar energy loss models are
expected for the two different gas species. As long as the KATRIN model for scattering off
deuterium molecules is sufficiently similar to a model for scattering off tritium molecules, it
is a plausible approach to use it for simulations of KATRIN neutrino mass measurements
(for the similarity, see figure 6.1). Also, it is plausible to assume that the parameters for
the KATRIN energy loss model for scattering off tritium molecules can be measured with a
similar precision to the precision for scattering of deuterium molecules. In that regard, the
results for KATRIN’s sensitivity derived in this chapter should yield practical indications
on what to expect, once the KATRIN energy loss model is available in its final version and
for scattering off tritium molecules.

Additionally, it should be noted that the KATRIN model as presented is still preliminary
and may be subject to change because the analysis of recent measurements is still ongoing.
Furthermore, the KATRIN model does not yet incorporate all known systematic uncertain-
ties. Corresponding efforts for their incorporation are made at the time of writing this thesis.
In that regard, a future version of the KATRIN model may exhibit larger uncertainties
than the version used in this thesis. But at the same time a continuous modeling effort and
an improved understanding of the data may also cause reduced uncertainties. Nonetheless,
once the KATRIN model is completed, the study presented in this chapter is expected to
be easily repeatable because the necessary statistical tools are now readily implemented.
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Figure 6.1.: The preliminary empirical KATRIN energy loss model for elec-
trons scattering off deuterium molecules. The black line shows the KATRIN energy
loss model as established by a designated subgroup of the KATRIN collaboration for
electrons scattering off deuterium molecules (KATRIN model). The corresponding model
for scattering off tritium molecules as established by [Ase+00] (Aseev model) is shown for
comparison as a shaded area. (That the latter is plotted as an area instead of as a line
solely serves readability as the two functions overlap strongly.) The top panel shows the
probability densities of the energy loss. The transition from the excitation peak to the
ionization tail is marked by the ionization energy of deuterium at Eion,D2 = 15.467 eV.
The bottom panel shows the absolute symmetric 1-σ uncertainties of the models. The
uncertainties were obtained through uncertainty propagation via derivatives from the
uncertainties of the model parameters (see figure 3.3 for the parameter values of the
Aseev model and appendix D for the KATRIN model). Correlations are respected for the
KATRIN model. However, there are no published correlations for the Aseev model. The
KATRIN model shows particularly improved uncertainties in the ionization tail region in
comparison to the Aseev model. (KATRIN model adapted from [Pre-Han19-1].)
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6.3. Statistical Prerequisites

This section develops the statistical tools used in the scope of this chapter in order to
evaluate the impact of the KATRIN energy loss model on KATRIN’s sensitivity to the
neutrino mass. The methods are described in a general manner (and could be applied to
study model uncertainties in general) and then related to the KATRIN energy loss model
in each section separately.

Concept and Notation

The general concept of the study presented in this chapter is the following: The parameters
of the KATRIN energy loss model, πeloss and πeloss+ (see eq. 6.1 and 6.6), are treated as
free parameters in a neutrino mass fit. This makes the model more general than fixing
these parameters to their best estimates. Such an approach, the inclusion of further free
parameters in the model of a measurement, may eliminate or at least reduce the effect of a
possible systematic bias in parameter inference, but their presence will also result in an
increased statistical uncertainty on the parameter of interest [Tan+18], here, the squared
neutrino mass. In that regard, the following notation is used for the uncertainties of a
parameter of interest within this chapter:

• σstat denotes the statistical uncertainty without using additional free fit parameters
beyond the set of a nominal four-parameter KATRIN neutrino mass fit (see section 4.3),

• σtot denotes the statistical uncertainty in the presence of further free fit parameters
and

• ∆σstat = σtot − σstat denotes the difference.

As an aside, the mitigation of a systematic bias by additional fit parameters has already
been demonstrated in another context in section 5.3.3, where the parameter for the signal
amplitude AS could partly compensate for a constant offset of the scattering cross section.

Outline of the Statistical Prerequisites

In the study presented in this chapter, the parameters of the KATRIN energy loss model
are treated as free fit parameters. A KATRIN neutrino mass measurement is however
hardly sensitive to these parameters. Without further measures, one would obtain a greatly
enlarged statistical uncertainty because the likelihood is relatively flat in the dimension of
these additional parameters. In contrary, the measurement of the KATRIN energy loss
was especially designed to be sensitive to its parameters. In other words, there are data
that can be used to constrain the parameters in neutrino mass inference. Section 6.3.1
presents a corresponding concept for the combination of a neutrino mass and a calibration
measurement.

Treating the parameters of the KATRIN energy loss model as free leads to the presence of
additional nuisance parameters. Section 6.3.2 explains the profile-likelihood method for
the treatment of such nuisance parameters when determining a one-dimensional confidence
interval (as required for the squared neutrino mass).

In order to incorporate the statistical nature of the detector counts measured by the KATRIN
detector into neutrino mass inference, ensemble tests can be applied (see section 4.6.2).
Ensemble testing may be computational demanding. Section 6.3.3 introduces the idea of a
so-called Asimov data set that can represent an ensemble of simulated data sets and hence
simplify statistical studies.

In the scope of this chapter, the combination of the statistical tools mentioned above was
applied in order to study how the uncertainties of the KATRIN energy loss model inflict
KATRIN’s sensitivity to the neutrino mass.
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6.3.1. Combination of a Calibration and a Neutrino Mass Measurement

If two models share a set of parameters θs and, additionally, have an individual set of
parameters θ1 and θ2 and for each model exists a statistically independent set of observations,
then a combined likelihood L is given by the product of the likelihoods L1 and L2 of each
measurement [Tan+18]

−2 lnL(θs,θ1,θ2) = −2 lnL1(θs,θ1)− 2 lnL2(θs,θ2)
≡ −2 lnL1(θs,1)− 2 lnL2(θs,2) , (6.7)

where, for ease of notation, the combined parameter vectors θs,1 ≡ (θs,θ1) and θs,2 ≡
(θs,θ2) are introduced. In the scope of this chapter, it makes sense to identify the
first measurement with a KATRIN neutrino mass measurement and the second with the
measurement of the KATRIN energy loss model (or the Aseev model). In order to emphasize
generality, this identification is postponed until the end of this section and the second
measurement is called a calibration measurement throughout this section.

Approximated Combination of Likelihoods

For practicality, in this thesis, an approximation is applied: The calibration measurement is
treated as evaluated independently (which is the case for the evaluation of the measurement
of the KATRIN energy loss model). Hence, there are estimates θ̂s,2, and an estimated
covariance matrix V̂s,2 for the parameters of the calibration measurement (in this chapter,
variables with a hat mark an estimator). These can in turn be used to approximate the
likelihood L2. A choice that stands to reason for the approximation of L2 is a multivariate
normal distribution N. For the purpose of parameter inference, −2 lnL2 needs only to be
accurately approximated within the contour that is needed to extract confidence intervals.
The choice of a multivariate normal distribution corresponds a symmetric approximation
in second order of − lnL2 around its minimum. The combined likelihood (6.7) then reads

−2 lnL(θs,θ1,θ2) ≈ χ2(θs,1)− 2 lnN(θs,2, θ̂s,2, V̂s,2) + constants
= χ2(θs,1)︸ ︷︷ ︸

(1)

+ (θs,2 − θ̂s,2)TV̂ −1
s,2 (θs,2 − θ̂s,2)︸ ︷︷ ︸

(2)

+ constants (6.8)

Here, (1) is the chi-square likelihood for a KATRIN neutrino mass measurement (see
eq. 4.4). And (2) resembles the negative log-likelihood of the calibration measurement
approximated by a multivariate normal distribution. Terms having a form like (2) may be
called “pull terms” because in the minimization of the likelihood they “pull” the parameters
θs,2 towards the corresponding values in θ̂s,2.

Chi-Square Characteristics

The chi-square term (1) in equation (6.8) is assumed to be a sum of standard normal
distributed random variables (as discussed in section 4.2). Hence, a likelihood only composed
of the chi-square term (1) offers a goodness-of-fit criteria via the Pearson chi-square statistic.
Whether the same criteria can be applied to the combined likelihood has to be investigated
individually from case to case. A corresponding study with regard to the KATRIN energy
loss model is presented in the subsequent section 6.4.2.

Implementation in the KaFit Software Framework

The KaFit software module (see section 4.5) had allowed to use one-dimensional Gaussian
“pull terms” (term (2) in eq. 6.8). In the scope of this thesis, the software was extended
to allow for arbitrary dimensions with corresponding correlations by using a multivariate
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normal distribution. Albeit not of particular interest in this chapter, for completeness, the
following shall be mentioned: By comparing equations (4.6) and (6.8) it becomes apparent
that such “pull terms” take the same mathematical form as Bayesian priors. For that reason,
further term forms apart from the multivariate normal distribution were implemented in
order to be used as priors in a Bayesian analysis. For a documentation of the software
features see appendix C.

Application to the Energy Loss Model
With regard to the study presented in this chapter, the following identification can be
made: θ1 comprises the parameter of a nominal four-parameter KATRIN neutrino mass
fit (see section 4.3). Furthermore, the calibration measurement can be identified with the
measurement of the KATRIN energy loss model θs = πeloss, θ2 = πeloss+, θ̂s = π̂eloss,
θ̂2 = π̂eloss+ (see equations 6.1 and 6.6 for πeloss and πeloss+) and the corresponding
estimator for the covariance matrix V̂s,2 = V̂eloss,eloss+. The numerical values for the
three estimators can be found in the form of the means, the standard deviations and the
correlation matrix in appendix D. In the same manner, the calibration measurement can
instead be identified with the measurement of the Aseev model θs = (A1, A2, ε2, ω1, ω2)T

without additional nuisance parameters dim(θ2) = 0 and a diagonal, estimated covariance
matrix V̂s,2 ≡ V̂Aseev (diagonal because there are no published correlations of the parameters
of the Aseev model). See equation (3.21) for the meaning of the parameters of the Aseev
model and see the caption of figure 3.3 for their values.

6.3.2. Nuisance Parameters and the Profile-Likelihood Method
Apart from the parameters of interest θ, the KATRIN likelihood can depend on further
nuisance parameters π. With regard to the study presented in this chapter, the parameter
of interest is the squared neutrino mass θ ≡ m2

ν and the nuisance parameters are the further
three parameters of a nominal four-parameter KATRIN neutrino mass fit as well as the
parameters of the energy loss model (KATRIN or Aseev). The derivation of a combined
confidence region for the full parameter set may cause long run times (or be impossible)
due to the dimensionality (here: 15 parameters of the KATRIN model and additional four
parameters of a nominal KATRIN neutrino mass fit). And, more importantly, as indicated
by the naming conventions, only a confidence interval for the squared neutrino mass is
of interest. The aim of KATRIN is the deduction of a stand-alone confidence interval
for the neutrino mass as opposed to an interval that depends on many other nuisance
parameters. This section outlines the profile-likelihood method, that effectively handles
nuisance parameters in the derivation of a one-dimensional confidence interval.

Confidence Regions for the Parameters Of Interest Only
Section 4.4.2 already introduced a method for deriving confidence regions for the full pa-
rameter set that the likelihood depends on (parameters of interest and nuisance parameters)
based on the likelihood ratio as a test statistic. It can be used to reject estimators for the
combined parameter set with a significance of α and include all non-rejected estimators in
a confidence region of confidence level α. The same approach may also be used to construct
a confidence region only for the parameters of interest. But, in the strict frequentist
approach, values for the parameters of interest are excluded from the confidence region only
if they are rejected for all possible values of the nuisance parameters [Tan+18]. To show
the rejection for all possible values of the nuisance parameters may be difficult [Tan+18]
(corresponding studies were not pursued in the scope of this thesis). The difficulty may be
circumvented if a test statistic is found that solely depends on the parameters of interest.
Exact independence from the nuisance parameters is only achievable in special cases, it
can, however, be achieved approximately by the use of the profile-likelihood ratio as test
statistic [Tan+18].
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The Profile-Likelihood Ratio

In the following, the profile likelihood is defined. It only depends on the parameters of
interest θ and is independent of the nuisance parameters π. Its values correspond to
the likelihood values evaluated at θ in the dimensions of the parameters of interest and
maximized in the dimensions of the nuisance parameters [Tan+18]

Lp(θ) = L(θ, ˆ̂π(θ)) , (6.9)

where the double-hat indicates the maximization respectively the “profiling”. Also, the
profile-likelihood ratio can be defined [Tan+18]

λp(θ) = Lp(θ)
Lp(θ̂)

. (6.10)

According to Wilks’ theorem [Wil38], the distribution of −2 lnλp(θ̂), where θ̂ is the MLE
(see section 4.1), approaches a chi-square distribution in the limit of a large data sample,
independently of the values of the nuisance parameters π [Tan+18]. Hence, the profile-
likelihood ratio offers a test statistic, based on which, values for the parameters of interest
can be rejected independently of the values of the nuisance parameters. In other words, the
profile-likelihood method is a constructive approach on how to derive a confidence region
for the parameters of interest.

6.3.3. An Asimov Data Set in Relation to Ensemble Tests in Sensitivity
Studies

If one were to repeat the KATRIN experiment many times, one would obtain an ensemble
of confidence intervals for the neutrino mass (see section 4.4.2 about confidence intervals).
KATRIN’s sensitivity can be deduced from a confidence interval (see section 4.6.1 about
KATRIN’s sensitivity). In that sense, if many KATRIN measurements are simulated, one
also obtains an ensemble respectively a distribution of sensitivities. It should be noted,
that such a distribution of sensitivities is narrow compared to its expectation value (see for
example the subsequent eq. 6.12 where the spread of the statistical uncertainty (68 % C.L.)
on the squared neutrino mass is smaller than the mean value by two orders of magnitude).
In that sense, the whole distribution of sensitivities is not necessarily of interest, but the
mean or the median sensitivity can provide sufficient information. One way to retrieve the
mean or the median sensitivity is to simulate many KATRIN neutrino mass measurements
and fluctuate the measured electron counts according to Poissonian statistics (or Gaussian
statistics as an approximation) and extract them from the obtained distribution. The
simulation of many measurements was for example applied within the scope of the KATRIN
Design Report [KAT05].

However, simulating a KATRIN neutrino mass measurement can be time-consuming
depending on its level of detail. In that regard, using only one simulation would be more
practical. The median of KATRIN’s sensitivity may be retrieved from one simulation
by replacing the electron count rates with their expectation value instead of fluctuating
them according to Poissonian statistics [Cow+11]. This reasoning is based on Walt’s
theorem [Wal44] that concerns the sum of Gaussian distributed random variables in the
limit of many summands (which approximately conforms the KATRIN-chi-square likelihood).
Such a single simulated data set is called an Asimov1 data set. However, whether this
approach is applicable may be hard to verify without doing an ensemble test, which would
nullify the practicality here.

1The name of the Asimov data set is inspired by the short story “Franchise”, by Isaac Asimov. In
the story, elections are held by selecting the single most representative voter to replace the entire
electorate [Cow+11].
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In the scope of this chapter, both approaches, using an Asimov data set and simulat-
ing an ensemble, were applied. The outcome verifies that an Asimov data set would
be representative in the study presented in this chapter and indeed yields the median
sensitivity.

6.4. Free Fit Parameters of the Energy Loss Model in Neutrino Mass
Inference

This section lists the increase of the statisitical uncertainty by additional fit parameters
using the Aseev or the KATRIN energy loss model, respectively. The sensitivity study
was conducted using a mathematical model of a KATRIN neutrino mass measurement as
described in chapter 3 and the Aseev model as described in section 3.2.5 using a nominal
configuration based on the KATRIN Design Report [KAT05] with a squared neutrino mass
of 0 eV2 and a measurement time of three years. Correspondingly, the SSC and KaFit
modules were used (see section 4.5). The full configuration of the study can be found in
appendix E.

The confidence interval for the squared neutrino mass was extracted via the profile-likelihood
method as described in section 6.3.2.

The following three cases were investigated using an Asimov data set and the second case
also via ensemble testing:

1. The simulation- and fit-model use the KATRIN energy loss model, but it was assumed
to be without uncertainties. In other words, only the four parameters of a nominal
KATRIN-neutrino-mass fit (see section 4.3) were treated as free parameters and the
parameters of the KATRIN energy loss model were fixed to their best estimates. In
the following, this case will be denoted the “nominal case”.

2. The simulation- and fit-model use the KATRIN energy loss model, and all its param-
eters were treated as free in order to incorporate the uncertainties of parameters of
the KATRIN model, which results in a 19-parameter fit.

3. The simulation- and fit-model use the Aseev model, and all its parameters were
treated as free in order to incorporate the uncertainties of the parameters of the
Aseev model, which results in a nine-parameter fit.

For the last two cases, the parameters of the energy loss models were constrained via
“pull terms” as described in section 6.3.1 about the combination of a neutrino mass and a
calibration measurement.

Section 6.4.1 presents the results using an Asimov data set. And section 6.4.2 presents the
same results as obtained by an ensemble test for the second of the cases listed above.

6.4.1. Sensitivity from an Asimov Data Set

Figure 6.2 shows the profile-likelihood ratios and table 6.1 lists the extracted confidence
intervals and obtained sensitivities for the three cases mentioned in the introduction to
this section.

The result of the nominal four-parameter KATRIN neutrino mass fit should be comparable
to the results of former works listed in table 4.1. Here, a ∼ 4× 10−4 eV2 smaller statistical
uncertainty on the squared neutrino mass is obtained compared to the results by [Kle14;
Höt12]. This is mainly due to the fact, that in the study presented in this chapter a
more up-to-date [Ams+15] detection efficiency of 95 % was used, whereas the other works
used 90 %.
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Figure 6.2.: Profile-likelihood ratio of a KATRIN measurement from an Asi-
mov data set. The graph shows the profile-likelihood ratio λp incorporating the uncer-
tainties of the following three cases: 1) KATRIN model (dashed line), 2) Aseev model
(dotted line) or 3) nominal case (shaded area). For a description of the different cases,
the reader is referred to the main text. (That the nominal case is plotted as an area
instead of as a line solely serves readability because a line would overlap with the line for
the case of the KATRIN model.) The MLE recovers the true simulated squared neutrino
mass of 0 eV2 with a corresponding likelihood ratio (and profile likelihood ratio) of 1
(⇒ − lnλp(θ̂) = 0). The horizontal s-σ lines are drawn at s2/2 as per equation (4.9).
Their intersections with − lnλp mark the confidence intervals for the neutrino mass at
68 % respectively 90 % confidence level. The width of the two intervals indeed relate
through the factor 1.645 due to the parabolic shape of − lnλp. The uncertainties of
the KATRIN model hardly have an impact compared to the nominal case because the
corresponding profile likelihoods are almost equal (also see table 6.1 for quantitative
values).

Also, the tabulated values show, that the extrapolation of the likelihood to negative squared
neutrino masses as discussed in section 4.4.2 yields a slightly asymmetric (order of ∼ 10−4)
profile likelihood for the nominal case and the case that treats the parameters of the
KATRIN model as free. This might mean, that a perfectly symmetric extrapolation might
need fine-tuning of the corresponding parameters on a case-by-case basis.

Under the restrictions listed in section 6.2, the following conclusions can be drawn:

• Treating the parameters of the KATRIN model as free parameters and constraining
them as described in section 6.3.1 about the combination of a calibration and neutrino
mass measurement results in a enlarged statistical uncertainty (68 % C.L.) for the
squared neutrino mass

∆σstat(m2
ν) = 1.2× 10−4 eV2 . (6.11)

as compared to a nominal four-parameter KATRIN neutrino mass fit. This enlarge-
ment is negligible with respect to the KATRIN systematic budget as it would change
KATRIN’s sensitivity by less than 1 meV.
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Table 6.1.: Neutrino mass confidence intervals and sensitivities obtained from
an Asimov data set. The table lists values that can be extracted from the profile-
likelihood ratio depicted in figure 6.2 for the three conducted studies denoted in the
first column (also refer to the main text for a description of these three cases). The
following quantities are reported: the lower bound of the confidence interval (68 % C.L.)
on the squared neutrino mass l(m2

ν), the upper bound u(m2
ν), half the width of the

interval σstat(m2
ν) or σtot(m2

ν) and KATRIN’s sensitivity on the neutrino mass as per
equation (4.11). For the calculation of the sensitivity an additional systematic budget of
0.017 eV2 was included (see section 4.6.2).

l(m2
ν)

(10−2 eV2)
u(m2

ν)
(10−2 eV2)

Smν(90 %)
(meV)

1. nominal case -1.586 1.592 σstat(m2
ν) = 1.589× 10−2 eV2 196

2. KATRIN model -1.598 1.604 σtot(m2
ν) = 1.601× 10−2 eV2 196

3. Aseev model -1.931 1.939 σtot(m2
ν) = 1.935× 10−2 eV2 206

• Using the KATRIN model at its current stage yields an improvement of 10 meV in
sensitivity to the neutrino mass compared to using the Aseev model.

• The logarithm of the profile-likelihood ratio has a parabolic shape, which translates
to a Gaussian shape for the likelihood. This justifies the usage of the factor 1.645 to
convert a confidence interval of 68 % confidence level into one of 90 %.

6.4.2. Cross-Check and Extension of the Asimov Data Set via Ensemble
Testing

An ensemble of 4046 KATRIN neutrino mass measurements with a true neutrino mass of 0 eV
was simulated using the KATRIN energy loss model and incorporating its uncertainties in
the same manner as for the Asimov data set described in the last section 6.3.3. However,
as opposed to the Asimov data set, in the simulation of the ensemble, the detector counts
were fluctuated according to Poissonian statistics. Several aspects were investigated as
listed below:

Test of Coverage

The extraction of a confidence interval via the profile-likelihood method as done in the
previous section 6.3.3 for the Asimov data set should per construction yield a coverage
probability of 68.2 %. If all conditions are met for this to hold was tested. In other words,
68.2 % of the obtained confidence intervals in the conducted ensemble test should cover
the true simulated squared neutrino mass of 0 eV2. The obtained coverage is 67.6 % as
illustrated in figure 6.3. The slight undercoverage on the 10−3 scale may stem from a
limited ensemble test size. Furthermore, it must be emphasized that here the likelihood
of the measurement of the KATRIN energy loss model is approximated by a multivariate
normal distribution and does not fluctuate in the presented ensemble test. For the result to
have full validity, the measurement of the KATRIN energy loss model has to be simulated
along with the KATRIN neutrino mass measurement. This may be the aim of a future
analysis.

Chi-Square Characteristics

The combined likelihood of a neutrino mass and a calibration measurement evaluated at
the MLE −2 lnL(θ̂) might not follow the chi-square statistic as mentioned in section 6.3.1.
Figure 6.4 shows the obtained distribution of −2 lnL(θ̂) in the conducted ensemble test.
An MTD with 41 retarding potentials was used. Hence, there are 41 summands in the
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likelihood for the KATRIN neutrino mass measurement. In the combined likelihood, there
are additional 15 summands to approximate the likelihood of the measurement of the
KATRIN energy loss model. In total, there are 19 fit parameters, four for the nominal
KATRIN neutrino mass fit (see section 4.3) and 15 in order to incorporate the uncertainties
of the KATRIN model. Thus, the hypothesis stands to reason that the obtained distribution
follows a chi-square distribution with 41+15−19 = 37 degrees of freedom. A corresponding
Kolmogorov–Smirnov test yields a p-value of p = 6× 10−6. In other words, this hypothesis
has to be rejected with a significance of 4σ. Repeating the test for 38 respectively 39 degrees
of freedom yields p = 0.14 respectively p = 1× 10−14. Hence, a chi-square distribution
of 38 degrees of freedom may not be rejected. This is important because it means that
the chi-square statistic can not necessarily be used as a measure for goodness-of-fit when
incorporating the uncertainties of the KATRIN energy loss model into the neutrino mass
inference in the way described in this thesis. Or, at least, one has to be careful about the
choice of degrees of freedom. The origin of this effect is that, here, the likelihood of the
measurement of the KATRIN energy loss model is approximated by a multivariate normal
distribution and hence does not fluctuate in the given ensemble test.
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Figure 6.3.: Test of coverage for the ensemble of confidence intervals obtained
in the sensitivity study using the KARTRIN energy loss model. The graph
illustrates the coverage probability. An ensemble of 4046 KATRIN neutrino mass mea-
surements with a true squared neutrino mass of 0 eV2 was simulated. For each simulated
measurement a confidence interval was constructed using the profile-likelihood method.
The obtained confidence intervals were sorted by their lower limit and plotted stacked
which yields the gray band. The confidence intervals that cover the true value are depicted
in dark gray, while the ones that do not cover the true value are depicted in light gray.
In total 67.6 % coverage is obtained. In the limit of an infinite ensemble size, a coverage
of 68.3 % would be expected per construction (also refer to the main text for a limitation
of this statement). It should also be noted, that there is little fluctuation in the width of
the confidence intervals, which hints at the representative qualities of an Asimov data set.
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Figure 6.4.: Chi-square distribution for the simulated ensemble of neutrino
mass measurements obtained in the sensitivity study using the KATRIN
energy loss model. An ensemble of 4046 KATRIN neutrino mass measurements was
simulated. The histogram shows the obtained distribution of the likelihood L evaluated
at the MLE θ̂. The obtained distribution may follow a chi-square distribution with 38
degrees of freedom. For details the reader is referred to the main text.

Representative Qualities of the Asimov Data Set

The estimated mean and standard deviation of the distribution of the confidence intervals
(68 % C.L.) as obtained by the ensemble test is

σ̂tot(m2
ν) = (1.599± 0.013)× 10−2 eV2 (6.12)

in agreement with the one obtained through the Asimov data set in table 6.1. Furthermore,
the median confidence interval

σ̃tot(m2
ν) = 1.598× 10−2 eV2 (6.13)

recovers the one of the Asimov data set on the 10−5 eV2 level. This verifies the Asimov
data set as representative for the study on the KATRIN energy loss model presented in
this chapter.

6.4.3. Reduction of Systematic Effects by Additional Fit Parameters

The motivation for the inclusion of further free fit parameters is their capability to com-
pensate for systematic shifts. In order to check whether this has a significant effect with
regard to the KATRIN energy loss model, the following study was conducted: A KATRIN
neutrino mass measurement was simulated using the KATRIN energy loss model as in
the previous sections (see appendix E for the full configuration). An Asimov data set was
used with the electron counts substituted by their expectation values instead of fluctuated
according to Poissonian statistics. In the simulation, all but one parameter of the KATRIN
energy loss model were taken as the given mean values in appendix D. One parameter was
displaced from this value by the amount of its 1-σ-uncertainty (one time negatively and
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one time positively). The neutrino mass was inferred from the simulated data in order to
quantify the systematic shift that such a displacement can induce. Two types of fits were
performed:

1. The fit parameters of the KATRIN energy loss model were fixed to their means
as given in appendix D. This causes a systematic shift of the squared neutrino
mass because one parameter of the KATRIN energy loss model is displaced in the
simulation.

2. The parameters of the KATRIN energy loss model (πeloss and πeloss+ from eq. 6.1
and eq. 6.6) are left as free fit parameters constrained by “pull terms” as described in
section 6.3.1 about the combination of a calibration and a neutrino mass measurement.
This may partly compensate for a systematic shift of the squared neutrino mass.

This procedure was repeated for each of the nine parameters of the KATRIN energy loss
model. In total, 36 shifts of the squared neutrino mass were determined. Two for the
positive and negative displacement of a parameter times two for the two fit types listed
above times nine repetitions with one for each parameter. Furthermore, the same method
was then also applied for the Aseev model (the corresponding parameter means and 1-σ
uncertainties are given in te caption of figure 3.3). The induced shifts on the inferred
squared neutrino mass are listed in table 6.2.

This study aimed to asses whether further free fit parameters can compensate for systematic
shifts in neutrino mass inference with regard to the energy loss model. Indeed a reduction
of the systematic effects could be achieved in all cases listed in table 6.2. For the KATRIN
model, the reduction of systematic shifts is of the order of 10−4 eV2. This effect is too small
to be significant because the systematic budget for the energy loss model is 6× 10−3 eV2

according to the KATRIN Design Report [KAT05]. For the Aseev model, a significant
reduction on the order 10−3 eV2 could be achieved for the parameters ω1 and A1. That the
additional fit parameters have a greater effect for the Aseev model than for the KATRIN
model might be caused by the different dimensionality of the models (5 additional free fit
parameters for the Aseev model and 15 additional free fit parameters for the KATRIN energy
loss model). A higher dimensionality leaves more degrees of freedom when maximizing the
likelihood. The effects of the difference of the fit model and the (simulated) data might
therefore be distributed over more parameters. This might allow for finding a parameter
configuration that fits the data without reducing the shift of the squared neutrino mass.
Also, these effects have to be related to the increase of the statistical uncertainty as per
table 6.1. When using the parameters of the Aseev model as free fit parameters, the
increase in the statistical uncertainty of ∆σstat(m2

ν) = 3.46× 10−3 eV2 (see table 6.1)
counterbalances the reduction of the systematic effects.

For the KATRIN model, the greatest shifts are caused by the parameters s3 and s2 on a
scale that is slightly greater than the allocated systematic budget of 6× 10−3 eV2. The
other shifts are below this threshold. Each shift can be understood as the worst-case
scenario on its own because the correlations of the parameters make it unlikely that two
or more parameters are displaced strongly at the same time. For example s3 and s2 are
anti-correlated with a correlation coefficient of −0.61 (see appendix D) and hence the
corresponding systematic effects are likely to compensate each other. For the Aseev model,
the greatest shift is caused by the parameter ω1, which is also above the systematic budget
of 6× 10−3 eV2. No correlations are published for the parameters of the Aseev model,
which makes it difficult to decide whether it is likely that effects cancel out or intensify
each other. That cancellation of effects are of importance can also be seen in figure 6.1
that compares the uncertainty band of both energy loss models and here the KATRIN
model has significantly smaller uncertainties in the ionization tail. A future study should
consider to include the correlations for the KATRIN model when studying the induced
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Table 6.2.: Systematic shifts of the squared neutrino mass induced by offsets
of the parameters of the energy loss model. The left column lists all parameters of
the energy loss model. Each one was displaced from its mean value by its 1-σ-uncertainty
in a separate simulation. The difference of the inferred squared neutrino mass from the
simulation truth of 0 eV2 is given in the two central columns. The sub columns show the
shift for a negatively (left) or a positively (right) displaced parameter, respectively. The
study was done once for fixed parameters of the energy loss model and once having them
as free but constrained fit parameters as described in the main text. The last column
shows by which quantity the free fit parameters can compensate for the systematic shift
(the difference was calculated before rounding). All shifts became smaller as expected.
The upper half of the table shows the results for the KATRIN energy loss model and the
lower half for the Aseev model.

parameter fixed fit parameters
∆m2

ν (10−3 eV2)
constrained fit parameters

∆m2
ν (10−3 eV2)

difference
∆|∆m2

ν| (10−3 eV2)
KATRIN energy loss model

A1 3.3 -3.4 3.2 -3.3 0.1 0.1
m1 -0.2 0.1 0.0 0.1 0.2 0.0
s1 4.1 -4.2 4.1 -4.1 0.1 0.1
A2 5.4 -5.4 5.3 -5.3 0.1 0.1
m2 -0.8 0.8 -0.8 0.8 0.0 0.0
s2 9.3 -9.3 9.1 -9.1 0.2 0.2
A3 3.8 -3.9 3.5 -3.7 0.3 0.1
m3 -0.5 0.5 -0.4 0.5 0.1 0.0
s3 10.2 -10.1 9.9 -9.9 0.4 0.2

Aseev energy loss model
A1 4.1 -4.1 1.4 -1.4 2.7 2.7
A2 1.1 -1.1 0.2 -0.2 0.9 0.9
ω1 8.0 -8.0 3.0 -3.0 5.0 5.0
ω2 0.4 -0.4 0.0 0.0 0.4 0.4
ε2 0.3 -0.3 0.0 0.0 0.3 0.3

systematic shifts. In a rough approximation, one can look at the average of the 18 absolute
shifts in table 6.2 for the KATRIN energy loss model, which yields

〈
∆m2

ν,fix

〉
= 4.2× 10−3 eV2

for the case of fixed energy loss parameters and

〈
∆m2

ν,free

〉
= 4.1× 10−3 eV2

for the case of free and constrained parameters. Both values are within the systematic budget
of 6× 10−3 eV2. Given the increased statistical uncertainty by ∆σstat(m2

ν) = 0.1× 10−3 eV2

(eq. 6.11) in the case of free parameters, the improvement of the systematic shift is completely
compensated.

It should be noted, that the presented study only investigates the uncertainties of the
energy loss models, but does not make further statements about their applicability. In other
words, there may be reasons to transit to the KATRIN model beyond the improvement of
the sensitivity on simulated data sets. For example, the inclusion of the second peak as
depicted in figure 6.1 in the energy loss function may prove to be more correct when used
with real data.
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6.5. Conclusion

A general statistical framework was developed that enables the treatment of model uncer-
tainties by additional free fit parameters. Leaving the parameters of the KATRIN energy
loss model as free in order to reduce systematic effects would increase the statistical uncer-
tainty on the squared neutrino mass by ∆σtot(m2

ν) = 1.2× 10−4 eV2, which is negligible
given the KATRIN systematic budget. Additionally, the reduction of systematic effects is
on the order of 10−4 eV2, which is not significant given the systematic budget on the order
of 10−3 eV2 for the energy loss function.

Aside from systematic effects, further conclusions could be drawn from the statistical
studies: It was shown, that Asimov data sets of the presented kind may reasonably be
assumed to be representative for an ensemble of neutrino mass measurements. Also, it was
demonstrated, that precautions have to be taken when using the chi-square statistic as a
measure for goodness-of-fit at the same time as incorporating “pull terms”. And it was
confirmed that the profile-likelihood method yields a confidence interval of the expected
coverage of 68 % in the presented study.





7. Summary

In the scope of this thesis, two aspects concerning the inelastic electron scattering off gas
molecules in the WGTS were investigated:

Energy-dependence of the Inelastic Scattering Cross Section

A model for electron-scattering in the WGTS was established in dependence of the incident
electron energy. The main finding was that, if the energy-dependence of the scattering
cross section in neutrino mass inference were neglected, it could lead to a systematic bias
of the estimated squared neutrino mass of ∆m2

ν = 1.09× 10−2 eV2 when using the design
KATRIN analysis interval of 30 eV below the endpoint of the β spectrum. However, the
effect does not have to be neglected, but can be incorporated in the analysis using the
model that was established. It should be mentioned, that certain approximations were
made in the modeling process. For details and for further findings, the reader is referred to
the conclusion and outlook section 5.5.

Statistical Methods and the KATRIN Energy Loss Model

The main achievement is the transfer of statistical methods into the context of the KATRIN
experiment to enable the treatment of a high-dimensional model of a KATRIN measurement
in neutrino mass inference. The statistical tools were applied to assess whether systematic
effects stemming from the energy loss function can be reduced by additional free fit
parameters. The reduction was on the order of 10−4 eV2 or less for the inferred squared
neutrino mass, which is not significant given the systematic budget of 6× 10−3 eV2 allocated
for the energy loss function by the KATRIN Design Report. For further findings, the reader
is referred to the conclusion section 6.5.
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Appendix

A. Proof that the Poisson Model for Electron-Scattering is a Probability
Density

In the following, it is shown that the energy-dependent Poisson model P̄l(ES) (see equa-
tion 5.15) resembles a probability density in l independent of a constant starting energy ES
of electrons. Accordingly, the two properties that have to be verified are

∀ES > 0 : P̄l(ES) ≥ 0 (A.1)
∞∑
l

P̄l(ES) = 1 . (A.2)

The fist condition holds because all quantities in the calculation of P̄l(ES) are positive. For
the second condition, one can use that the Poisson distribution is a probability density
that sums to one
∞∑
l

P̄l(ES) = 1
d · (1− cos(θmax))

∫ d/2

−d/2

∫ θmax

0
sin(θS)

∞∑
l

Poisson(µ(ES, zS, θS), l) dθS dzS

= 1
d · (1− cos(θmax))

∫ d/2

−d/2

∫ θmax

0
sin(θS) · 1 dθS dzS

= 1 .

This verifies that the Poisson model is a probability density in the amount of scatterings l.
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B. Measurement Time Distributions

Below, the five different MTDs, one per column, as used in the study in section 5.3.2 are
given. The total measurement time amounts to three years each. The retarding energies
qU are denoted relative to E0 = 18 575 eV.

qU − E0 (eV) measurement time (s)
-50.0 0 0 0 0 550000
-49.0 0 0 0 0 550000
-48.0 0 0 0 0 550000
-47.0 0 0 0 0 550000
-46.0 0 0 0 0 550000
-45.0 0 0 0 0 550000
-44.0 0 0 0 0 550000
-43.0 0 0 0 0 550000
-42.0 0 0 0 0 550000
-41.0 0 0 0 0 550000
-40.0 0 0 0 720000 550000
-39.0 0 0 0 720000 550000
-38.0 0 0 0 720000 550000
-37.0 0 0 0 720000 550000
-36.0 0 0 0 720000 550000
-35.0 0 0 0 720000 550000
-34.0 0 0 0 720000 550000
-33.0 0 0 0 720000 550000
-32.0 0 0 0 720000 550000
-31.0 0 0 0 720000 550000
-30.0 0 0 1050000 720000 550000
-29.0 0 0 1050000 720000 550000
-28.0 0 0 1050000 720000 550000
-27.0 0 0 1050000 720000 550000
-26.0 0 0 1050000 720000 550000
-25.0 0 1350000 1050000 720000 550000
-24.0 0 1350000 1050000 720000 550000
-23.0 0 1350000 1050000 720000 550000
-22.0 0 1350000 1050000 720000 550000
-21.0 0 1350000 1050000 720000 550000
-20.0 1910000 1350000 1050000 720000 550000
-19.0 1910000 1350000 1050000 720000 550000
-18.0 1910000 1350000 1050000 720000 550000
-17.0 1910000 1350000 1050000 720000 550000
-16.0 1910000 1350000 1050000 720000 550000
-15.0 1910000 1350000 1050000 720000 550000
-14.0 1910000 1350000 1050000 720000 550000
-13.0 1910000 1350000 1050000 720000 550000
-12.0 1910000 1350000 1050000 720000 550000
-11.0 1910000 1350000 1050000 720000 550000
-10.0 1910000 1350000 1050000 720000 550000
-9.0 1910000 1350000 1050000 720000 550000
-8.0 908164 908164 908164 908164 908164
-7.5 908164 908164 908164 908164 908164
-7.0 908164 908164 908164 908164 908164
-6.5 908164 908164 908164 908164 908164
-6.0 908164 908164 908164 908164 908164
-5.5 908164 908164 908164 908164 908164
-5.0 1975257 1975257 1975257 1975257 1975257
-4.5 12214808 12214808 12214808 12214808 12214808
-4.0 20728847 20728847 20728847 20728847 20728847
-3.5 2020665 2020665 2020665 2020665 2020665
-3.0 3300000 3300000 3300000 3300000 3300000
-2.0 3300000 3300000 3300000 3300000 3300000
-1.0 3300000 3300000 3300000 3300000 3300000
0.0 3300000 3300000 3300000 3300000 3300000
1.0 3300000 3300000 3300000 3300000 3300000
2.0 3300000 3300000 3300000 3300000 3300000
3.0 3300000 3300000 3300000 3300000 3300000
4.0 3300000 3300000 3300000 3300000 3300000
5.0 3300000 3300000 3300000 3300000 3300000
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C. Documentation of KaFit-Likelihood Extensions

In the scope of this thesis, the implementation of the likelihood in the KaFit framework
was extended as described in section 6.3.1. The possibility was introduced to multiply the
likelihood by different function types that resemble term (2) in equation (6.8).

KaFit is configured using an XML-like syntax. Example excerpts from KaFit-XML-configurations
are given below. The documentation is given to a level that enables the usage by a
user already familiar with KaFit. [Double] is used as a placeholder for a number and
[Index*] for a parameter index. For example, the squared neutrino mass has the param-
eter index 0. A new Penalty-tag was introduced as sub-tag of the already established
LoglikelihoodKatrin-tag:

<LoglikelihoodKatrin
Name=" myKatrinLogL " PDF="Gauss" RunSource =" myRunGen "
SpectrumSimulator =" mySpecSim ">

<Penalty >
<!-- Penalty Type -->

</ Penalty >
</ LoglikelihoodKatrin >

<!-- Penalty Type --> can be substituted by one ore more of the tags listed below.

Multivariate Normal Distribution

The Parameter-tag represents a parameter the likelihood depends on. Its attribute Mean
specifies the mean of a parameter, Std the standard deviation, and one or more Correlation-
sub-tags the correlations between the parameters.

<MultivarNorm >
<Parameter Index="[ Index1 ]" Mean="[ Double ]" Std="[ Double ]" />
<Parameter Index="[ Index2 ]" Mean="[ Double ]" Std="[ Double ]" />
<!-- ... -->
<Correlation Index1 ="[ Index1 ]" Index2 ="[ Index2 ]" Value="[ Double ]" />
<!-- ... -->

</ MultivarNorm >

One-Dimensional Gaussian Distribution

Analogously to the multivariate normal distribution, a one-dimensional Gaussian distribu-
tion can be used:

<Gaussian ParamIndex ="[Index]" Mean="[ Double ]" Std="[ Double ]" />

Uniform Neutrino Mass Prior

A uniform prior on the neutrino mass in a Bayesian analysis can be set via the following
tag:

<ConstInSqrt ParamIndex ="0" />

The former implementation in KaFit only allowed for a constant prior on the squared
neutrino mass. The following lines derive the form of a prior on m2

ν that resembles a
uniform prior on mν . Let f(mν) = C = constant be the prior on mν and g(m2

ν) be the
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prior on m2
ν . Starting from conservation of probability one derives

f(mν) dmν =g(m2
ν) dm2

ν

⇒ g(m2
ν) =f(mν)

(
dm2

ν

dmν

)−1

⇒ g(m2
ν) =C 1

2
√
m2
ν

.

D. Preliminary Parameter Values of the KATRIN Energy Loss Model

The best-fit values, standard deviations and correlations of the fit parameters for the
KATRIN energy loss model for electrons scattering off deuterium molecules as used in
this thesis are listed below [Pre-Han19-1]. The parameter names follow section 6.1. The
parameters that actually enter into the KATRIN energy loss model are the first nine from
A1 to s3. Their uncertainties are derived using the HESSE algorithm [S-MIN] of the
MINUIT2 software package.

A1 m1 s1 A2 m2 s2 A3 m3 s3 tof, 15 NK int, 15 int, 50 int, 100 Nint, 15

A1

m1

s1

A2

m2

s2

A3

m3

s3

tof, 15

NK

int, 15

int, 50

int, 100

Nint, 15

1.00
0.34 1.00
0.16 0.83 1.00
-0.01 -0.21 -0.11 1.00
0.41 0.56 0.54 0.21 1.00
-0.60 -0.39 -0.50 0.00 -0.09 1.00
-0.10 -0.05 -0.04 0.54 0.20 0.31 1.00
-0.26 -0.09 -0.16 0.27 0.35 0.62 -0.05 1.00
0.23 0.09 0.12 -0.61 -0.37 -0.61 -0.84 -0.49 1.00
0.00 0.00 0.00 -0.06 0.00 -0.01 -0.05 0.03 0.02 1.00
0.00 0.00 0.00 -0.27 0.01 -0.04 -0.30 0.16 0.15 0.23 1.00
0.00 0.00 0.00 0.06 -0.01 0.01 0.06 -0.04 -0.04 -0.04 -0.20 1.00
0.01 0.00 0.00 -0.04 -0.02 0.00 -0.05 0.02 0.02 0.05 0.20 -0.04 1.00
0.02 -0.03 -0.01 -0.01 -0.01 0.03 0.00 -0.03 -0.02 0.05 0.23 -0.05 0.18 1.00
0.00 0.00 0.00 0.09 -0.01 0.01 0.10 -0.06 -0.05 -0.07 -0.32 0.77 -0.07 -0.11 1.00

correlations
A1 0.0288017 1.767840×10 3

m1 11.8468 1.751470×10 2

s1 0.18288 1.386360×10 2

A2 0.266339 1.251600×10 3

m2 12.785 3.852710×10 3

s2 0.486158 3.947970×10 3

A3 0.0728571 4.749040×10 4

m3 14.9051 8.118930×10 3

s3 1.0307 2.701450×10 2

tof, 15 0.104427 2.536950×10 4

NK 0.997937 8.585490×10 4

int, 15 0.0964532 1.446480×10 4

int, 50 0.656861 1.956730×10 4

int, 100 1.64586 1.364480×10 4

Nint, 15 1.0099 8.138880×10 5

       mean           standard deviation

0.8

0.4

0.0

0.4

0.8
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E. Configuration of the Sensitivity Study using the Empirical KATRIN
Energy Loss Model

The configuration of the SSC and KaFit modules as used in the sensitivity study in chapter 6
is listed below.

WGTS

gas column density 5× 1021 molecules/m2 (constant, no density profile)
slices 1
length 10.082 m
tritium purity 95 %

Differential Spectrum

final molecular states by Saenz, emulating Doppler effect
theo. corrections screening, radiation (reference energy: molecular final states)
Fermi function approximately relativistic
endpoint energy 18 575 eV
squared neutrino mass 0 eV2

Energy Loss

energy loss function KATRIN or Aseev model
inel. scattering cross section 3.456× 10−22 m2

elas. scattering neglected

Transmission Function

general configuration relativistic, not detailed
mag. field in analyzing plane 3× 10−4 T
mag. field of pinch magnet 6 T
mag. field in WGTS 3.6 T

Detector

efficiency 95 %

MTD

voltages reference MTD from the KATRIN Design Report
range [E0 − 30 eV, E0 + 5 eV]
duration 3 years

Background

rate 10mcps





Acronyms

BIXS beta-induced X-ray spectroscopy.

CKrS condensed 83mKr source.

CPS cryogenic pumping section.

DPS differential pumping section.

EMCS Earth magnetic field compensation system.

FBM forward beam monitor.

FPD focal plane detector.

FT KATRIN First Tritium measurement campaign.

KaFit KATRIN Fitter.

KASPER KATRIN Analysis and Simulations Package.

KNM1 KATRIN neutrino mass measurement campaign 1.

LARA laser Raman system.

LEP Large Electron Positron Collider.

LFCS low-field correction system.

MAC-E magnetic adiabatic collimation with electrostatic filtering.

MLE maximum likelihood estimator.

MTD measurement time distribution.

PULCINELLA precision ultra-low current integrating normalization electrometer for low-
level analysis.

RMMS radial magnetic measuring system.

RS rear section.

SDS spectrometer and detector section.

SM Standard Model of Particle Physics.

SSC source and spectrum calculation.
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SSM standard solar model.

STS source and transport section.

TDR KATRIN Technical Design Report.

TLK Tritium Laboratory Karlsruhe.

VMMS vertical magnetic measuring system.

WGTS windowless gaseous tritium source.
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