
Impact of non V-A contributions on the

T2 b spectrum and their relevance for the

KATRIN experiment

Diplomarbeit
von

Daniel Sevilla Sanchez

Institut für Physik
Johannes Gutenberg-Universität Mainz

April 2006

ii

Contents

1 Motivation and Introduction 1
1.1 History of neutrino physics . 1
1.2 Impact of non-zero neutrino mass on physics 2
1.3 Neutrino mass measurement . 3
1.4 Expected result of the KATRIN experiment 4
1.5 Objectives . 4

2 Tritium b decay spectrum: Standard approach and corrections 7
2.1 Within the Standard Model . 7

2.1.1 Fermi approach: Point-like interaction 7
2.1.2 Parity violation, left-handed neutrinos and V-A structure 9
2.1.3 Calculation of the decay probability 11

2.2 Beyond the Standard Model . 12
2.2.1 Right-handed neutrinos and T, S currents 12
2.2.2 Tachyonic neutrinos . 13
2.2.3 Violation of Lorentz invariance . 14

2.3 Energy considerations . 14
2.3.1 Radiative and electrostatic corrections to the spectrum 14
2.3.2 Excitation of the daughter molecule 15

3 The KATRIN experiment 17
3.1 MAC-E filter and the adiabatic motion of electrons 20
3.2 Windowless gaseous tritium source and electron scattering 24
3.3 Background events . 26
3.4 Measurement of the decay rate . 27

4 Simulations of the KATRIN experiment 29
4.1 Calculation procedure . 29
4.2 KATRIN simulations within the Standard Model 33
4.3 KATRIN simulations beyond the Standard Model 40

4.3.1 Non V-A structure . 40
4.3.2 Tachyonic neutrinos . 50
4.3.3 Violation of Lorentz invariance . 53

5 Conclusion and Outlook 55

A Parameters used in the simulations 57

iv CONTENTS

B Simulation code 59
B.1 Simulation package with MINUIT algorithms 59

B.1.1 Tools.h . 59
B.1.2 ResponseFunction.h . 61
B.1.3 DifferentialSpectrum.h . 66
B.1.4 IntegratedSpectrum.h . 80
B.1.5 DataGenerator.h . 82
B.1.6 Function.h . 85
B.1.7 Fitting.h . 93
B.1.8 Spectrum.cpp . 104

B.2 Simulation of the Non V-A approximate description 104
B.2.1 Levenberg.cpp . 104

List of Acronyms 115

Bibliography 121

Acknowledgements 123

Chapter 1

Motivation and Introduction

1.1 History of neutrino physics

Since Wolfgang Pauli postulated the existence of neutrinos in 1930 [1] to explain the
continuous energy spectrum of beta decay by saving the principle of energy conservation,
the verification of the physical properties of the neutrino has become a fundamental test
for physics theories and even an important key for opening new physics branches.

The first successful attempt to describe processes in which neutrinos are involved was
carried out by Enrico Fermi [2] few years after Pauli’s postulate. Fermi found out that
there were some analogies between the new so-called weak interaction and the very well-
known electromagnetism and hence he built a weak Hamiltonian by comparison to the
electromagnetic case. The result was a Hamiltonian formed by 4 different currents or
particles whose main feature was, that they shared one point of the space-time structure
(point-like interaction).

Due to the very low interaction probability between neutrinos and matter, the de-
tection of neutrinos or the determination of any of their properties has always been an
experimental challenge. During the 1950s, C.L. Cowan and F. Reines [3] measured for
the first time processes that corroborated the existence of neutrinos in nature. At the
same time, the first experiments that aimed to measure the electron neutrino mass were
carried out [4]. All of them have been overcoming technical difficulties and improving the
measurement sensitivity during years. However, they have concluded that the neutrino
mass is either zero or smaller than an upper limit established by the experiment.

Besides the electron neutrino studies, it was discovered that there is one neutrino flavor
for each element of the lepton family, that is in addition a muon neutrino [5] and a tau
neutrino [6].

Fermi’s theory was corrected by R. Feynman, M. Gell-Mann [7], E.C.G. Sudarshan
and R.E. Marshak [8] after discovering the presence of parity violation [9] in nature as
well as the left-handed helicity of neutrinos (right-handed for anti-neutrinos), leading to
the Vector minus Axialvector (V-A) structure of the interaction.

The present and most complete description of the weak interaction was found by S.L.
Glashow, S. Weinberg and A. Salam by assuming the existence of intermediate bosons
which carry the force and break the point-like image of the interaction. Both, the weak
force and the electromagnetism are mixed by the theory to demonstrate that they are the
same force. This theory, as described by Glashow-Weinberg-Salam, is one of the pillars
of the Standard Model (SM). Since only this part of the SM is of concern, we shall not

2 Motivation and Introduction

mention the strong interaction or quantum chromodynamics in this work.
Although the Glashow-Weinberg-Salam theory has been verified in all its predictions

some corrections to the SM were suggested. For instance, if neutrinos were right-handed
or tachyons, then electroweak physics should be corrected. At present, the possibility
for physics to have features beyond the SM description is still open and therefore many
experiments keep on looking for the Standard Model goodness. This is extremely impor-
tant for physics and specifically for neutrino physics, since the weak interaction, aside the
negligible gravitation, is the only one neutrinos are involved in.

The hypothesis of possible oscillations [10] between the three neutrino flavors
νe , νµ , ντ came up some years ago to explain the lack of electron neutrinos from the
Sun [11]. Such a situation might only occur if neutrinos have non-vanishing rest masses
in disagreement with the Standard Model.

So far, there have not been conclusions about the exact value of the neutrino mass, al-
though recent experiments (SNO, Kamiokande, GNO, Gallex, Sage, Homestake, Soudan2,
MACRO) have shown, that neutrino flavor oscillations are possible and therefore non-
vanishing neutrino masses have been postulated [12, 13, 14, 15]. This conclusion has
turned out to be the first proof of physics beyond the Standard Model and therefore it
opens a new range of possibilities.

1.2 Impact of non-zero neutrino mass on physics

Knowing the neutrino mass has a deep impact on physics, either for answering a fundamen-
tal question or for ruling out some current models. The first reason needs no explanation,
the second one has many implications on different fields. For instance, concerning as-
trophysics and cosmology, neutrinos are a good candidate for explaining hot dark matter
(νHDM) and hence the evolution of large scale structures (LSS) [16]. The reason for which
neutrinos could explain how LSS behave is that the ratio between neutrinos and baryons
is at present around 1 billion. Therefore, these relic neutrinos could play an important
role on the average density of the universe leading to the metric that will determine the
evolution of LSS.

On the other hand, cosmological models of structure formation strongly depend on the
ratio between cold dark matter (CDM) and HDM. CDM and HDM are differentiated by
the relativistic properties of the particles that form matter. If they are highly relativistic
then matter is HDM, while no relativistic particles are claimed to be CDM. As neutrinos
have a very small mass, at the moment of decoupling, neutrinos moved with velocities
near c and therefore they behaved strongly relativistic. Hence, a determination of the
neutrino contribution to the total dark matter content of the universe is important for our
understanding of structure formation. In terms of cosmology, it is known that neutrinos
heavier than 1 eV/c2 would dominate the universe [17] and a neutrino mass of about
10 eV/c2 may close the universe.

Regarding particle physics and quantum field theory, it would also be very interesting to
elucidate whether neutrinos are Dirac particles or Majorana particles. The experimental
ability to distinguish between Dirac or Majorana states depends very strongly on the
actual value of the neutrino rest mass [18]. This distinction is important basically to
know whether neutrinos are their own antiparticles or not. Moreover, it could also help
to understand theory mass models, i.e., why the neutrino mass is much smaller than the

1 Neutrino mass measurement 3

other particle masses.
Measuring the exact neutrino mass or an upper limit could help us to solve the above

mentioned problems on cosmology and particle physics, but in addition it would give us
the answer to the fundamental question of knowing the physical properties of the smallest
constituents of nature.

1.3 Neutrino mass measurement

KATRIN (Karlsruhe Tritium Neutrino Mass Experiment, see Fig. 1.1) is intended to
measure the electron neutrino mass by investigating the T2 b -decay spectrum near the
endpoint. For that purpose, an integrating spectrometer is being built. The setup, which
will be ready in 2008, is based on the expertise gained in the Mainz and Troitsk neutrino
mass measurement experiments [19, 20, 21]. As we shall discuss in detail in Ch. 3, the
method used to measure the spectrum near the endpoint consists on selecting only the most
energetic electrons of the decay. By using the above mentioned integrating spectrometer,
a retarding potential is placed between the decay source and the detector, such that only
electrons with energy above the retarding potential are able to reach the detector. The
measurement is therefore the integral of the decay rate from the retarding potential to the
decay endpoint.

Experimentally, it is possible to achieve such a measurement by means of a MAC-E
filter, that is Magnetic Adiabatic Collimation followed by an Electrostatic filter [22]. This
type of spectrometer not only filters electrons but also guides them from the source to the
detector due to the magnetic field action. During this pathway their energy is transformed
adiabatically in order to have only one motion component parallel to the magnetic field.

To perform such an extremely difficult measurement, many other experimental chal-
lenges must be solved for KATRIN. For instance, a windowless gaseous tritium source
(WGTS) needs to be prepared. The column density inside this source has to amount to
1017atoms/cm2 which must be kept within very small fluctuations of 0.1% [22] at most.
This type of tritium source was ideally designed to deliver the most profitable relationship
between the number of decays and the number of scattering processes for the b-particles.
In addition, the retarding potential applied by the MAC-E filter has to be known with a
precision of 1ppm [22] and the background sources must be recognized and shielded. For
that purpose, an inner electrode is being constructed, since one of the biggest background
sources are electrons from the surface of the spectrometer vessel. This inner electrode will
repel those electrons [23, 24].

Figure 1.1: Overview of the experimental setup for the KATRIN experiment [22].

A general overview of the KATRIN experiment can be seen in Fig. 1.1. The long
tube coming from the left represents the tritium source (WGTS) followed by the pumping

4 Motivation and Introduction

sections which pump tritium out of the WGTS. Tritium must be continously injected and
pumped out in order to keep the column density as constant as possible. After the WGTS
and the pumping sections (thin cylinder in Fig. 1.1) and right before the main spectrometer
(large cylinder in Fig. 1.1) is placed the so-called pre-spectrometer which is intended to
filter most of the electrons but let the fastest ones go towards the main spectrometer. The
functionality of the pre-spectrometer is to reduce the number of electrons to be delivered
to the main spectrometer in order to avoid ionization of the residual gas inside it. The
setup is completed with the installation of the detector right after the main spectrometer.

After building this experimental configuration with the technical features explained
above and overcoming some other experimental difficulties, the KATRIN experiment is
supposed to improve the current limits on the neutrino mass up to a factor of 10.

1.4 Expected result of the KATRIN experiment

The most precise experiments so far related to the neutrino mass measurement are the
ones from Mainz and Troitsk [19, 20]. They established an upper limit for the neutrino
mass of m(νe) ≤ 2.3 eV/c2 (experiment sensitivity) (95% C.L.)[21].

If the neutrino mass is actually very close to a vanishing value, the KATRIN experiment
is expected to set an upper limit for the neutrino mass of about m(νe) ≤ 0.2 eV/c2 (90%
C.L.). If not, the lowest value of mν that can be established with 99.9999% C.L. is
0.35 eV/c2 (discovery potential).

At this point, it is interesting to comment that both, the experiment sensitivity and
the discovery potential values rely on the theoretical functions used to fit the experimental
data, that means that the experiment is to some extent model-dependent.

The numbers given above are calculated under the assumption that neutrinos obey
physics within the Standard Model. But as will be demonstrated through this work, by
calculating these quantities with Non V-A physics, the discovery potential is worse.

Nevertheless, devoted experiments like a high-precision measurement of the Q value
of 3T(β−)3He decay could help to solve this situation, since better experimental limits on
the tritium endpoint and the Non V-A coupling constants would almost restore both the
discovery potential and the experiment sensitivity to the optimal values of the Standard
Model. These devoted experiments are the only way to break the model dependence of
KATRIN.

1.5 Objectives

The principal objective of this work is to determine the new KATRIN sensitivity on
the electron neutrino mass when Non Vector minus Axialvector (Non V-A) physics is
considered in the analysis of the experimental data from tritium beta decay. This sort
of study is accomplished by means of Monte Carlo (MC) simulations which reproduce
the experiment many times by creating experimental data with statistical fluctuations.
A secondary product of such calculation is the experiment sensitivity on other physical
magnitudes, like the tritium beta decay endpoint, the Non V-A coupling constants or
the background rate on which the experiment could in principle also improve the present
experimental limits.

1 Objectives 5

To reach such objectives a simulation package has been developed. This package was
enlarged to also check the sensitivity of the experiment on the SM as well as to cover
other Non Standard Model (Non SM) problems like tachyonic neutrinos or the theory of
violation of Lorentz invariance.

This thesis is mainly split into five chapters, as follows:

- Chapter 2 is devoted to study the basics of tritium beta decay either within the
Standard Model or within physics beyond the Standard Model. Also, energy corrections
common to both cases are explained. It summarizes all approaches to the tritium beta
decay we shall deal with.

- Chapter 3 is dedicated to talk about the grounds of the experiment. The main
experimental features and their mathematical treatments will be justified.

- In chapter 4, it is explained in detail how the Monte Carlo simulations were done.
Results that were obtained by means of this method are discussed.

- Chapter 5 summarizes the most important results of this work. It also insists on
suggesting present possible improvements to be done on the same direction of this research
with the aim of finding enhanced results.

There are several references related to the different mentioned topics through out the
whole work. The reader may find useful to follow the KATRIN Design Report [22] as a
general guidebook and specifically for the experimental details.

6 Motivation and Introduction

Chapter 2

Tritium b decay spectrum:

Standard approach and corrections

In this chapter the basics of the beta decay will be put forward. Specifically, here the beta
decay on tritium is of interest, represented by:

T → He+ + e− + ν̄e (2.1)

Actually, on a more fundamental level, the process (2.1) occurs by involving the fol-
lowing particles:

n → p+ + e− + ν̄e (2.2)

It can be even described at the quark level:

d → u + e− + ν̄e (2.3)

which summarizes the change of flavor from the quark down to the quark up and the
generation of two leptons.

2.1 Within the Standard Model

With the aim of obtaining the b spectrum of molecular tritium T2 one should follow
Fermi’s first theory. Afterwards corrections due to parity violation and chirality properties
of neutrinos will be incorporated.

Although, the Standard Model approach should include intermediate bosons, we shall
work with a reduced description that deals only with the point-like image of the interaction.

2.1.1 Fermi approach: Point-like interaction

Enrico Fermi built a Hamiltonian for the weak interaction by taking the electromagnetic
Hamiltonian as a guide [25].

8 Tritium b decay spectrum: Standard approach and corrections

The Hamiltonian density for the electromagnetic interaction can be expressed as:

H =
∑
n

ejµ(rn)Aµ(rn) (2.4)

where Aµ is the vector potential,

jµ is the current density of the particle n on the position rn,

n is the index which identifies each particle within the electromagnetic field,

rn is the position vector of the particle n, and

e is the charge unity and determines how strong the interaction is.

Finally, summation over the index µ is assumed.

Thus, in analogy, the Hamiltonian density for the weak interaction is:

H =
∑

n

gJµ(rn)Lµ(rn) (2.5)

where Lµ is the “vector potential” of the “field” emitted as a lepton,

Jµ is the “current density” of a neutron-proton transition,

n is the index which identifies each particle on the process,

rn is the position vector of the particle n, and

g is the new coupling constant that will set the strength of the interaction.

While working in relativistic quantum mechanics, both Dirac’s equation and Klein-
Gordon’s equation are valid. In this work, Dirac’s equation has been chosen and therefore
fields like Ψ represent four-vectors of the Dirac image. In (2.4) currents may be built like
jµ = Ψ̄fγµΨi. Hence, the weak current must also have a structure like Jµ = Ψ̄pγ

µΨn.
Moreover, it is assumed that the “vector potential” Lµ associated to the lepton current
is linear with respect to the lepton and neutrino field, in order to achieve a Hamiltonian
density H that is relativistic invariant. Consequently, Lµ = Ψ̄eγµΨν .

In quantum electrodynamics Ψp,Ψn,Ψe,Ψν , allude to the annihilation of respectively
p,n, e, ν and the creation of their antiparticles, such that an interaction like

H ∼ (Ψ̄pγ
µΨn)(Ψ̄eγµΨν) (2.6)

may describe any of the following processes:

1. n → p + e− + ν̄e

2. n + νe → p + e− (2.7)

3. n + e+ → p + ν̄e

4. p̄ → n̄ + e− + ν̄e

Since the Hamiltonian has to be hermitic, the hermitic conjugate of (2.6) must be
added up to the Hamiltonian density in such a way, that the new part describes the
opposite processes to those given in (2.7):

2 Within the Standard Model 9

1. p → n + e+ + νe

2. p + ν̄e → n + e+ (2.8)

3. p + e− → n + νe

4. n̄ → p̄ + e+ + νe

To complete the analogy with the electromagnetism it is necessary to think about how
particles without charge behave inside an electromagnetic field.

Equation (2.4) describes the behaviour of a current inside an electromagnetic field, but
it may occur that a particle without charge but magnetic moment feels the presence of a
magnetic field[25]. In such a case, the Hamiltonian density is written like H = m(σB)
where σ is the spin of the particle, m is its magnetic moment and B is the magnetic field.

In order to include the above mentioned effect into the electromagnetic Hamiltonian
as well as to force it to be Lorentz invariant, we have to rewrite the Hamiltonian density
of the electromagnetic situation as:

H = mΨ̄(γµγρ − γργµ)ΨFµρ (2.9)

where Fµρ is the electromagnetic tensor.

If we extend the analogy to the weak interaction instead of having equation (2.6), we
obtain:

H = g(Ψ̄pγµγρΨn)(Ψ̄eγµγρΨν) + h.c. (2.10)

The latter is the Hamiltonian we shall work with. A new coupling constant g has been
introduced to describe how strong the interaction is.

2.1.2 Parity violation, left-handed neutrinos and V-A structure

When we constructed the weak Hamiltonian from the the electromagnetic case, we dealt
with:

H =
∑

n

gJµ(rn)Lµ(rn)

where

Jµ = Ψ̄pγ
µΨn

and

Lµ = Ψ̄eγµΨν

but we could have used combinations of Dirac matrices instead of using only one operator.
Let us now write a new Hamiltonian which contains a more general operator called Oi:

Hi = gi(Ψ̄pOiΨn)(Ψ̄eOiΨν) + h.c. (2.11)

10 Tritium b decay spectrum: Standard approach and corrections

where the index i refers to the type of operator we are using.

It works for i = S, V, T, A, P which means scalar, vector, tensor, axial and pseudoscalar,
respectively. Mathematically they are built like:

S −→ Oi = 1

V −→ Oi = γµ

T −→ Oi = γµγν (2.12)

A −→ Oi = γµγ5

P −→ Oi = γ5

The name each operator received is due to the geometrical properties the object Ψ̄OiΨ
has under Lorentz transformations.

The overall Hamiltonian is then calculated from adding up all the contributions we
talked about above, such that:

H = g
∑

i

CiHi (2.13)

Here, the coupling constants have also been renamed to: gi = gCi

The sub-Hamiltonian Hi we just studied describes the so-called even interactions which
are differentiated from another set of odd interactions that might occur in nature. These
new interactions would be described by the following Hamiltonian:

H odd
i = gi(Ψ̄pOiΨn)(Ψ̄eOiγ5Ψν) + h.c. (2.14)

This distinction was proposed after discovering the parity violation in weak interactions
and hence a combination of both descriptions has to be mixed as follows:

H = g
∑

i

(
CiH

even
i + C

′
iH

odd
i

)
+ h.c. (2.15)

where a relation of normalization is fulfilled among the 10 coupling constants:

∑

i

|Ci|2 + |C ′
i |2 = 1

Now, if we want to take into account the possibility of non-conservation of the leptonic
number, we must introduce a new set of 10 coupling constants represented by Di , D

′
i, as

well as differentiate both neutrino and antineutrino states. In that case, the Hamiltonian
is rearranged:

H = g
∑

i

Ψ̄pOiΨnΨ̄eOi

[(
Ci + C

′
iγ5

)
Ψν + (Di + D

′
iγ5)γ5ΨC

ν

]
+ h.c. (2.16)

2 Within the Standard Model 11

From this, which is the most general case, we may want to reduce the Hamiltonian to
a more practical one.

Experiments tell us, that the V,A,S,T,P currents are not present in nature with the
same frequency. As a matter of fact, the operators for S,T and P can be totally suppressed
and operators for V and A are sufficient for explaining all known experimental results.

Thus, by including in Eq.(2.16) only the currents that are according to experiments not
negligible (Vector and Axialvector), we finally get to an appropriate Hamiltonian density:

H = g
CV√

2

[
Ψ̄pγµ(1− λγ5)Ψn

] [
Ψ̄eγµ(1− γ5)Ψν

]
(2.17)

with λ = CA/CV and C2
A + C2

V = 1.

2.1.3 Calculation of the decay probability

We just found the Hamiltonian of the interaction with which we can calculate physical
observables. For us, the most useful observable is the decay probability of the transition
(2.1).

By using perturbation theory it is possible to deduce Fermi’s Golden rule, which relates
the transition probability, the matrix element of the transition, and the density of final
states:

d2N

dEdt
=

2π

~
|M |2 dn

dW
(2.18)

Here, the quantity dn
dW represents the number of final states in the interval of energy

dW . The transition matrix element |M |2 must be calculated by integrating the Hamilto-
nian of the interaction over the nuclear volume dτ once per nucleon, that is:

|M |2 =
A∑

k=1

∫
H dτk (2.19)

The number of possible final states is estimated by taking a differential volume in the
phase space of the electron and neutrino:

dn =
1
~6

p2
edpep

2
νdpνdΩedΩν

Here, dΩe and dΩν denote the solid angles in which the electron and neutrino are emitted.

It only remains to compute the decay probability to solve Eq.(2.19). For that purpose,
a Hamiltonian density has to be chosen. Let us check the solution when the Hamiltonian
we already derived (2.17) is put into (2.19). A detailed discussion of this procedure can
be found for instance in [25]:

d2N

dEdt
= K · pe · Eetot · ε ·

√
ε2 −m2

ν · θ(ε−mν) (2.20)

where K is a set of fundamental constants K = G2
F

cos2θC |M |2
2π3~7c5

. All the energies and masses
are given in units of mec

2 and momenta in units of mec.

12 Tritium b decay spectrum: Standard approach and corrections

GF is the Fermi constant, θC is the Cabibbo angle, Eetot denotes the total energy of
the electron whereas pe denotes its momentum, ε refers to the total energy of the neutrino
and mν to its mass.

2.2 Beyond the Standard Model

Three different theoretical approaches beyond the Standard Model have been checked with
the purpose of investigating their influence on the result of the KATRIN experiment. The
first one takes into account the possibility of having more than the Vector and Axialvector
currents in the weak Hamiltonian. The second one deals with neutrinos as tachyons
since some years ago this hypothesis came up to explain the fact that some experiments
concluded a negative neutrino mass. Finally, we shall test the influence of the violation of
Lorentz invariance since special relativity might only be right at low energies.

2.2.1 Right-handed neutrinos and T, S currents

Let us write the differential spectrum (decay rate) of the tritium beta decay by including
more coupling constants than those that generate the Vector and Axialvector currents.
This decay rate can be calculated as a correction to the Standard Model (see [26, 25, 27]).
Thus, we must keep in mind equation (2.20):

[
d2N

dtdE

]

NonV−A

=
[

d2N

dtdE

]

SM

(
1 + a

pe

We
cosθ + b

(
me

We
− d

′ mν

Wν

)
− c

′ me

We

mν

Wν

)
(2.21)

Here, We and Wν denote the electron and neutrino total energy, respectively, θ is the
angle between the outgoing neutrino and electron. The new constants a, b, d

′
, c
′
resume

the influence of the Tensor and Scalar currents.

As we want to know the total number of decays per unit of time and energy, we must
integrate over the angle θ between neutrino and electron from 0 to 2π, but:

∫ 2π

0
cosθdθ = 0

Thus, the contribution of the term with the constant a is totally negligible. At this
point it is interesting to point out that the constant b has a structure like A/B with a
very small A whereas the constant d

′
is like C/A with the same A. This means that the

term with only b is neglected, although combinations of bd
′
must be taken into account.

Thus, equation (2.21) can be rewritten as:

[
d2N

dtdE

]

NonV−A

=
[

d2N

dtdE

]

SM

(
1− bd

′ mν

Wν
− c

′ me

We

mν

Wν

)
(2.22)

With the purpose of having the minimum number of new parameters, we shall make
one last approximation in order to gather all the new coupling constants into one. The
approximation consists in considering the term me

We
as a constant within the energy range

we work, very near the endpoint where the electron energy is maximum.
Thus, let us check whether the approximation is reasonable in the energy range we are

interested in, i.e. where the electron kinetic energy ranges from 18525 eV to 18575 eV:

2 Beyond the Standard Model 13

κ ≡ me

We

∼= [0.9642, 0.9643]

Hence, the differential spectrum of tritium beta decay with non V-A physics can be
written as:

[
d2N

dtdE

]

NonV−A

=
[

d2N

dtdE

]

SM

(
1 +

mν

Wν
(−bd

′ − c
′
κ)

)
(2.23)

Finally, for the sake of simplicity the constants set −bd
′ − c

′
κ is grouped into

δ ≡ −bd
′ − c

′
κ to obtain:

[
d2N

dtdE

]

NonV−A

=
[

d2N

dtdE

]

SM

(
1 + δ

mν

Wν

)
(2.24)

Thus, we have introduced only one new parameter δ into the interaction. This δ

contains the non V-A physics we want to check since it has combinations of Tensor-Axial
and Scalar-Vector currents.

The physical boundaries of δ go from [−1, +1] although the present experimental limits
are set in [−0.28, +0.28]. By means of Monte Carlo simulations we shall elucidate whether
the KATRIN experiment will or will not improve these limits.

2.2.2 Tachyonic neutrinos

The hypothesis of tachyonic neutrinos came up some years ago with the goal of explaining
the unexpected decay rate at the very end of the spectrum that led to negative values of
m2

ν . A tachyon is a particle that is claimed to move faster than light. Therefore, in order
to deal with tachyons, the theory of relativity is not sufficient since causality would be
violated. A new causal theory of tachyons has been recently proposed [28] and calculations
for tritium beta decay have been done by considering neutrinos as tachyons.

Within this theory the energy-momentum relation changes to E2−p2 = −κ2 where κ is
the so-called tachyonic mass [28] such that the value of κ is always positive. Depending on
whether the helicity or chirality coupling is treated into the lagrangian of the interaction,
two differential spectra are derived for tritium decay.

-Helicity coupling:

d2N

dEdt
=

GF

2π3

[
κme(1− 3g2

A) + (1 + 3g2
A)Eetot

√
ε2 + κ2

]
pe

√
ε2 + κ2 (2.25)

-Chirality coupling:

d2N

dEdt
=

GF

4π3
(1 + 3g2

A)Eetotpe

[
ε2 + ε

√
ε2 + κ2 + κ2

]
(2.26)

In both equations all energies are dimensionless as they are written in units of mec
2.

ε can be extracted from the electron energy, by doing ε = E0 − E. E0 still represents the

14 Tritium b decay spectrum: Standard approach and corrections

endpoint energy and E the electron kinetic energy. Eetot is the total electron energy and
pe the electron momentum. A Heaviside function that does not allow any decay when
E > E0 is understood. Not both of these equations have been studied in this work. The
chirality coupling option was chosen to analyze a tritium beta decay spectrum ruled by
tachyonic physics.

2.2.3 Violation of Lorentz invariance

Another explanation for the unexpected number of counts near the endpoint that leads
to a negative value of m2

ν is the violation of Lorentz invariance. This hypothesis considers
Lorentz invariance as a physical law that works properly only for low energies. Thus, the
relativistic energy-momentum relation is not suitable and must be changed [29]. Indeed,
concerning neutrinos, a new relation is found such that fulfills:

E2
ν = p2

ν + m2
ν + 2λ|pν | (2.27)

where pν is the neutrino three-momentum and λ is a new parameter that breaks the
invariance and fulfills λ ≥ 0. A new tritium beta decay spectrum is found by using (2.27):

d2N

dtdE
= KpeEetotε

[
(ε2 + λ2 −m2

ν)
1
4 − λ

(ε2 + λ2 −m2
ν)

1
4

]2

θ(ε−mν) (2.28)

2.3 Energy considerations

As we need to reproduce the tritium beta decay spectrum with high accuracy, every pos-
sible correction to the ideal case must be considered. The most important ones regard
possible changes on the energy of the electron. For instance, through their pathway from
the decay to the detector, electrons might lose energy due to bremsstrahlung. Thus, the
electrodynamics of the electron must be computed in order to avoid systematic errors.
Another necessary process to take into account which involves energy changes, is the elec-
trostatic interaction between the outgoing b-particle and the daughter molecule. This
interaction is not included in the Hamiltonian deduced before. Therefore, the decay rate
must be somehow corrected by the connection between b-particle and molecule. In addi-
tion, it might happen that, when decaying, the daughter molecule takes away some energy
from the electron to stay in an excited state. This extra energy can be stored in the
molecule either inside the electronic configuration of the atoms of the molecule or inside
the whole molecule in a rotational or vibrational state. Fortunately, for tritium, after
beta decay, the probabilities of leaving the molecule on different states as well as their
corresponding energies is already available in the scientific literature [30, 31]. There are
some corrections that are not included in this work, for example, change of the electron
energy due to the molecular recoil, or due to the thermal molecular motion. Consequently,
it is assumed that the tritium molecule is totally stationary before and after the decay.

2.3.1 Radiative and electrostatic corrections to the spectrum

It is very important to distinguish between the actual energy of the electron at the moment
of decaying and the one that will be measured. A proper theoretical approach to the

2 Energy considerations 15

spectrum would consider at least the biggest sources of changes in the energy and therefore
deviations from the ideal case.

For that purpose, the electrostatic interaction between the outgoing electron and the
daughter molecule is calculated by means of the well-known Fermi function [32]. On the
other hand, energy losses due to electrodynamic considerations are computed by means of
the Sirlin function [33].

Both functions can be described with different approximations depending on the energy
range of the spectrum we are interested in. A very suitable one which works very well in
the last 50 eV of the spectrum is found in [32]. These two functions are gathered into only
one correction:

F (ε, y) = 2πy [1− exp(−2πy)]−1

(
1 +

2αβ

3π

)
log(2ε)

(
a− b

β

)
(2.29)

where a and b are empirical coefficients (see Appendix A). ε is the total neutrino energy
in units of mec

2, α is the fine structure constant, y = Zα
β , Z is the number of protons in

the daughter atom and β is the relativistic factor that considers the electron energy and
velocity.

The corrected spectrum has to be one of the spectra we explained above multiplied by
the function in (2.29). For instance, by taking the Standard Model spectrum:

d2N

dEdt
= K · F (ε, y)pe · Eetot · ε ·

√
ε2 −m2

ν · θ(ε−mν) (2.30)

2.3.2 Excitation of the daughter molecule

As tritium is a molecule formed by two atoms, it might happen that when one of the atoms
decays some energy gets stored into the molecule as rotational or vibrational energy. Of
course, it is also probable that the energy stays in the electronic configuration of one of
the atoms, i.e., as excitation energy. If these corrections were not taken into account the
systematic error on the energy of the outgoing electron would be huge.

b-decay can be treated in sudden approximation, i.e., the change of the nucleus is fast
compared to the time the electronic shell can rearrange itself. The transition from the
wave function of the ground state of T to the wave function of 3He+ can be very precisely
calculated. The same holds for the excitation of the rotational-vibrational states of the
T2 molecule. Therefore, the possible final states are very well-known, both the energy
and the probability of each state. This means that the systematic error is not present any
longer as soon as the calculation for distribution of states is carried out with sufficient
precision.

This calculation was done some years ago [30, 31] and got recently even more improved.
Thus, let us put this last correction into (2.30):

d2N

dEdt
= K

∑

i

Wi · F (εi, y)pe · Eetot · εi ·
√

εi
2 −m2

ν · θ(εi −mν) (2.31)

Where Wi is the probability of decaying to the state i and now the total neutrino energy
ε becomes εi = E0 −Ee − Ei and Ei is the energy stored in the molecule.

16 Tritium b decay spectrum: Standard approach and corrections

The same energy corrections must be included in the extended models. By doing so,
the following spectra are obtained:

Non V-A:

d2N

dEdt
= K

∑

i

Wi · F (εi, y)pe · Eetot · εi ·
√

εi
2 −m2

ν · θ(εi −mν)
[
1 + δ

mν

εi

]
(2.32)

here K is the usual K = G2
F

cos2θC |M |2
2π3~7c5

.

Tachyonic neutrinos, helicity coupling:

d2N

dEdt
= K

∑

i

Wi · F (εi, y)pe

[
κme(1− 3g2

A) + (1 + 3g2
A)Eetot

√
εi

2 + κ2
]
pe

√
εi

2 + κ2

(2.33)
here K = GF

2π3 .

Tachyonic neutrinos, chirality coupling:

d2N

dEdt
= K

∑

i

Wi · F (εi, y)Eetotpe

[
εi

2 + εi

√
εi

2 + κ2 + κ2
]

(2.34)

here K = GF
4π3 (1 + 3g2

A).

Violation of Lorentz invariance:

d2N

dEdt
= K

∑

i

Wi · F (εi, y)peEetotεi

[
(ε2i + λ2 −m2

ν)
1
4 − λ

(ε2i + λ2 −m2
ν)

1
4

]2

θ(εi −mν)

(2.35)
here K is also the usual K = G2

F
cos2θC |M |2

2π3~7c5
.

Chapter 3

The KATRIN experiment

KATRIN (Karlsruhe Tritium Neutrino mass experiment) is the next generation exper-
iment on the measurement of the electron neutrino mass by means of a very accurate
analysis of the tritium beta decay spectrum.

As commented in Ch. 1, KATRIN aims to improve the present experimental limit
on the electron neutrino mass by a factor of 10. In case of having an almost vanishing
neutrino mass the new upper limit will be 0.2 eV.

The long history of attempts to determine the electron neutrino mass from tritium
beta decay is justified by the fact that tritium presents extraordinary features for this
kind of measurement. Its endpoint E0 is around 18600 eV, which is a very low value in
comparison with other nuclei. This means that the retarding potential we have to generate
for filtering electrons is achievable with an uncertainty and stability of ≤ 1 eV. In addition,
its half life is relatively short, t1/2 = 12.3a, so that it is not difficult to get good statistics.

Moreover, tritium is one of the simplest molecules in nature. Consequently, theoretical
calculations of excited states of the molecule can be carried out with high accuracy.

Let us study how the electron neutrino mass influences the tritium beta decay spec-
trum. When working within the Standard Model, the differential decay follows the already
mentioned formula in (2.31), which includes corrections to the ideal decay and is, of course,
sensitive to changes of the neutrino mass. Despite of knowing this precise model, and for
the sake of simplicity, let us examine the neutrino mass influence by switching off the role
of the Fermi and Sirlin functions and the excited states of the daughter molecule. Thus,
going back to:

d2N

dEdt
= K · pe · Eetot · ε ·

√
ε2 −m2

ν · θ(ε−mν) (3.1)

From this description, it is expected to find some non vanishing function in those points
that fulfill ε > mν , i.e., when conservation of energy is fulfilled and the total energy of the
neutrino is bigger than its mass.

Given a decay endpoint, the total neutrino energy could be indirectly computed from
the endpoint and the electron kinetic energy, ε = E0−Ee. Then, it is clear that the bigger
the electron energy is the smaller the neutrino energy becomes.

18 The KATRIN experiment

The actual shape of the decay was calculated by following (3.1) with these conditions:
E0 = 18575 eV and m2

ν = 0 eV2. It is shown for the whole energy range in Fig. 3.1.
However, the experiment will examine only the fastest electrons, so that only the last 50
eV of this function will be analyzed.

The factor ε ·
√

ε2 −m2
ν in (3.1), which alludes to the combination of the neutrino

total energy and the neutrino momentum, is responsible for the decrease of the decay
probability after the maximum (around 4 keV) in the spectrum.

Figure 3.1: Spectral shape of the tritium b decay.

The influence of the electron neutrino mass on the spectrum is more evident in the
vicinity of the endpoint. This influence can be seen in Fig. 3.2 where three different
spectra are shown corresponding to m2

ν = 0 eV2 (center line), m2
ν = −3 eV2 (upper line)

and m2
ν = 3 eV2 (lower line). The endpoint is for all cases E0 = 18575 eV.

Let us remark that within the Standard Model, neutrinos with negative values of m2
ν

do not have any physical meaning but a statistical one. The lack of physical frames for
those neutrinos allows the violation of conservation of energy. To avoid this, the spectrum
of m2

ν = −3 eV2 (upper line) in Fig. 3.2 reaches the endpoint E0 = 18575 eV. How the
spectrum is treated for those negative values will be explained in chapter 4.

From Fig. 3.2 it seems to be obvious that a direct measurement of the neutrino mass
might be possible by detecting the point where the spectrum ends. Unfortunately, the real
experimental situation turns out to be different due to the unavoidable presence of random
background (BG) events. Details on the background are not subject of this work and the
item will hence be treated very briefly. The remarks are based on the extensive studies
of background carried out with the Mainz spectrometer [22, 24, 34]. The aim of these
experiments was to locate and eliminate sources of BG. BG can originate from surfaces or
come out of the spectrometer volume.

BG from surfaces:

19

Figure 3.2: Influence of the neutrino mass on the shape of the tritium b decay spectrum. m2
ν = −3 eV2

(upper line), m2
ν = 0 eV2 (center line), m2

ν = +3 eV2 (lower line).

- Field emission. These processes should play a minor role in KATRIN as the spec-
trometer vessel is on high voltage reducing the field gradient very strongly compared to
the experiment in Mainz.

- BG caused by radioactivity. Cosmic rays and environmental radioactivity induce the
emission of low energy electrons from metallic surfaces. A low fraction of these electrons
enters the volume of the spectrometer and may be focused onto the detector. To keep this
part of the BG under control, radioactivity in the vicinity of the KATRIN spectrometer
is kept low by proper selection of the materials (low activity concrete and low activity
steel). The BG caused by electrons from the surface could be strongly reduced in the
Mainz experiments by a grid electrode shielding the solid electrodes. Such a system will
be used in the KATRIN spectrometer.

BG out of the volume:
- Decay of tritium. The partial pressure of tritium will be reduced by the differential

pumping section of KATRIN to yield a background level below 1 mHz in the spectrometer
volume.

- BG due to collisions with trapped electrons and residual gas. This type of BG was
present in the Mainz setup but could be completely eliminated by removing the traps for
electrons. The KATRIN spectrometer will be free of traps and the residual pressure will
be in the XHV region of 10−11 mbar.

We expect the BG to be in the order of 10 recorded events in 1000s. This value will
be used in the simulations.

Let us introduce how the system works with real b-particles. Coming back to the idea
of the fundamental grounds of a tritium-based experiment, it is useful to understand the
general scheme of the Mainz experiment (see Fig. 3.3 [21]).

A tritium source (left part) decays producing electrons with kinetic energy from 0 eV
to the endpoint value E0 ≈ 18600 eV. Those electrons get out of the source without a

20 The KATRIN experiment

Figure 3.3: General scheme of the Mainz electron neutrino mass experiment [22].

preferred direction, that means, electrons might be detected in the whole solid angle 4π
with the same probability.

A set of superconducting magnets is responsible of selecting electrons that travel within
a solid angle of 2π (semisphere faced to the spectrometer). Then, the magnetic field guides
these electrons across the spectrometer towards the detector. The natural pathway of the
b-particles is changed by the magnetic field, but the energy remains unchanged

Only the most energetic electrons are useful for the determination of the neutrino
mass. Consequently, the spectrometer must filter almost all electrons but let the fastest
ones pass through. The potential barrier slows down electrons that do not have sufficient
energy. This process occurs in the first half part of the spectrometer, from the decay up
to the so-called analyzing plane (APL), where the magnetic field is minimum (see Bmin

in Fig. 3.3) . Since the retarding potential is symmetrical around the analyzing plane,
electrons that overcome the middle of the spectometer are speed up again towards the
detector (see Fig. 3.3, right part).

Unfortunately, the energy resolution of present detectors is not good enough for de-
termining precisely the energy of those electrons that cross our system. Therefore, given
a potential barrier, all detected events are added up as an integral.

3.1 MAC-E filter and the adiabatic motion of electrons

It has been already pointed out that the final tail of the tritum beta decay spectrum is
reconstructed in the experiment by guiding and filtering electrons from the decay. Let us
have a more detailed look at how this is experimentally done as well as at the physics
underneath.

First of all, it is important to emphasize that the magnetic guiding of electrons does
not change their energy. This guiding mechanism works under the adiabatic conditions,
which ensure that electrons move in a cyclotron motion around the magnetic field lines
meanwhile the magnetic moment µ = E⊥

B remains an invariant of the motion.

On every point of the electron trajectory, E⊥ is the energy associated to the perpen-
dicular component of the electron momentum to the magnetic field.

3 MAC-E filter and the adiabatic motion of electrons 21

Figure 3.4: Basics of the MAC-E filter and transformation of the momentum of the electron along its

pathway [22].

Around the analyzing plane one can easily visualize how the motion progress. Since
µ must be constant, and B is minimum at the analyzing plane, E⊥ almost vanishes in
order to increase the parallel component E‖ up to its maximum value. This is a real
experimental difficulty since filtration and guiding have to be done at the same time.

The motion of electrons inside the spectrometer is shown in Fig. 3.4. The vectorial
representation at the bottom refers to the electron momentum which is forced to change by
the magnetic field and becomes antiparallel to the electrostatic gradient at the analyzing
plane. The original momentum is restored when arriving at the detector.

The value of the magnetic field in some points of the experimental setup plays a vital
role for this motion to be achieved. The most determinant places and the magnetic field
at these positions are:

- The tritium source, Bs= 3.6 T

- The analyzing plane, BA= 3 · 10−4 T

- The detector, BD= 3 T

- The transport section, BT = 5.6 T

- The pinch, Bmax= 6 T

The last one is the largest magnetic field value in the experiment. The pinch can
be placed anywhere between source and detector. It reflects electrons with high starting
angles. In KATRIN it will be placed in front or behind the main spectrometer. The
location behind has the advantage to reject part of the BG. A scheme of these values of
the magnetic field is given in Fig. 3.5.

22 The KATRIN experiment

Figure 3.5: Magnetic field at relevant places of the experiment.

So, as stated before, the magnetic field is decisive for the transmission of electrons.
Of course, and more intuitive, the energy of the electron and the electrostatic gradient
are important as well. One can quantitatively calculate how much each of these factors
contribute to the transmission. For a detailed explanation on how to proceed, see for
instance [35]. The function in (3.2) is obtained for the KATRIN spectrometer. We shall
refer to it as transmission function from now on.

T (E, qU0) =





0 E − qU0 < 0
1−
r

1−Bs(E−qU0)
EBA

1−
q

1−∆EBs
EBA

E − qU0 ≥ 0 ∧ E − qU0 ≤ ∆E

1 E − qU > ∆E

(3.2)

Here, E is the electron energy, qU0 the retarding potential times the electron charge,
the notation for magnetic fields has been explained above and ∆E = E·BA

BMax
is the spec-

trometer resolution. This function gives the probability for an electron in the accepted
solid angle with energy E to pass through the spectrometer. The transmission function of
our spectrometer looks like Fig. 3.6.

It is important to note, that the function (3.2) is not a perfect step-function but it
has some slope when going from a vanishing probability to 1. This deviation from an
ideal Heaviside function yields the spectrometer resolution ∆E which for the reference
parameters of KATRIN amounts to 0.93 eV. Thus, the KATRIN setup is for sure able to
detect electrons with energy ∆E above the retarding potential.

For ease of discussion and calculation it was not mentioned that this transmission
function makes sense as long as we change the retarding potential by varying the potential
in the analyzing plane, otherwise, other effects must be mentioned.

Let us assume it will be done so. In such a case, function (3.2) is a good description for
explaining the electron behaviour once it has reached the spectrometer. There are other
substantial modifications to be considered, though. Mainly, when dealing with energy

3 MAC-E filter and the adiabatic motion of electrons 23

 0

 0.2

 0.4

 0.6

 0.8

 1

-4 -2 0 2 4

P
ro

ba
bi

lit
y

[E - qU] (eV)

Transmission function of the KATRIN spectrometer

Figure 3.6: Transmission function of the KATRIN spectrometer.

losses on electrons due to scattering. These modifications will be discussed in the next
section.

Now, let us come back to the interaction between the magnetic field and the electrons
from the decay, since not all the necessary information is in the transmission function.

Not every decay in the source will contribute to the measurement. The reason is that
only those magnetic lines that come out from the source and go through the analyzing
plane onto the detector will be able to transport electrons appropriately. The source area
is not fully imaged onto the detector to make sure, that electrons emitted from tritium
decaying on the walls nearby do not reach the detector. The area imaged onto the detector
is called the guided flux. For standard settings of KATRIN it is 192 Tcm2, the total flux
in the source is ∼ 220Tcm2. The cross section of the guided flux can be easily calculated
by using magnetic flux conservation:

∫

S
BSdAS =

∫

A
BAdAA

where the index S indicates source and A analyzing plane (APL).

BSAS = BAAA

AS =
BA

BS
AA

AS =
BA

BS
πR2

A (3.3)

Here, RA = 4.5m is the radius of the analyzing plane used for the experiment. The total
radius is close to 4.9 m. The grid electrode system covers about 25 cm. The remaining
15 cm to the guided flux make sure that the electric potential has reached the mean value
and is only very little influenced by the details of the grid electrode.

24 The KATRIN experiment

Moreover, one should rule out those electrons that get out of the source with very large
starting angles with the purpose of not counting electrons that suffer many scatterings. A
maximum starting angle is set by the magnetic mirror effect:

∆Ω
2π

= 1− cosθmax (3.4)

where

θmax = arcsin

(√
BS

Bmax

)

Once more, the configuration of the magnetic field selects the suitable particles. Finally,
the solid angle of (3.4) refers to 2π just to take into account the semisphere faced to the
spectrometer.

In Ch. 2, we discussed different approaches to the tritium beta decay. The differential
spectrum then calculated must now include the restrictions we just showed. We shall insert
the information of (3.4) and (3.3) into the constant K to describe properly the number of
measured events.

For example, by choosing the Standard Model approach given in (2.31), the decay rate
will be artificially altered by rewriting K:

d2N

dEdt
= K

∑

i

Wi · F (εi, y)pe · Eetot · εi ·
√

εi
2 −m2

ν · θ(εi −mν) (3.5)

with K = G2
F

cos2θC |M |2
2π3~7c5

1−cosθmax
2

BA
BS

πR2
A

3.2 Windowless gaseous tritium source and electron scat-

tering

We are already able to characterize the interaction between electrons and the spectrometer.
To avoid systematic uncertainties one should estimate as well the interaction between
electrons and the tritium source.

The KATRIN tritium source, called Windowless Gaseous Tritium Source, WGTS in
short, is expected to deliver a high luminosity and a low systematic uncertainty. Its design
is based on the experience of the Troitsk experiment [36].

Basically, this source is a 10 m long cylindrical tube of 90 mm diameter (see Fig.
3.7) filled with gaseous molecular tritium, which has to be continuously reinjected and
pumped out in order to achieve the optimum column density ρd = 1017atoms/cm2 within
an uncertainty of 0.1% [22], since no material window is allowed to stop the tritium gas
flow. Such level of accuracy relies on several variables, primarily the tube temperature
and the rate of injection.

The system is kept at a temperature of 27 K. The injection of tritium is carried out
at a pressure of 3.35 · 10−3mbar and it takes place at the center of the cylinder, such that
tritium is spread to yield an inhomogeneous density along the longitudinal axis.

The injected molecular tritum is highly pure, although some other species coexist
together inside the WGTS. Among them, H2, HD, HT, D2 and DT are the most important

3 Windowless gaseous tritium source and electron scattering 25

Figure 3.7: WGTS and pump stations DPS1-R, DPS1-F of KATRIN.

ones. The radiopurity of tritium and deuterium amounts to εT = 0.95% and 0.05%,
respectively. These ratios will transform for molecular species into 90% for T2 and the
missing 10 % for DT and D2.

When tritium decays it generates b-particles that have to travel through some fragment
of the WGTS system before getting into the spectrometer. During this flight, there is a non
vanishing probability of inelastic scattering by which the electron loses some energy. This
process could yield misleadings when measuring the spectrum by means of the method
explained before, due to the fact that the spectrometer, i.e. the transmission function,
would act over electrons with erroneous energy.

In order to solve this problem and to avoid the systematic uncertainty, one has to
calculate the scattering probability as well as the energy loss [37]. The following function
in (3.6) returns the probability for an electron to lose the amount of energy k in a dispersion
process:

f(k) =





A1exp(−2(k−k1)2

ω2
1

) k ≤ kc

A2
ω2

2

ω2
2+4(k−k2)2

k ≥ kc

(3.6)

In the latter function, A1, A2, k1, k2, ω1, ω2 are empirical values and kc was explicitly cal-
culated to guarantee the continuity of f(k). Their actual values can be found in Appendix
A.

Furthermore, one electron could suffer not only one scattering process but many of
them, so that probabilities of several scatterings must be estimated. Electrons with kinetic
energy within the region of interest, that is from 50 eV below the endpoint up to the
endpoint, i.e. from 18550 eV to 18600 eV, could have four scatterings at most [37]. A

26 The KATRIN experiment

fifth dispersion would take from the electron sufficient energy as to be retarded by the
spectrometer.

Let us name P0, P1, P2, ... the probability of zero-scattering, one-scattering, and so on
(see Appendix A). It is important to emphasize that these probabilities were calculated
without taking into account the position in which the decay occurs inside the WGTS.

To calculate the probability of losing an amount of energy k in, for instance, a two-
scattering process, one needs to convolute (3.6):

(f ⊗ f)(k) =
∫ E/2
0 f(k)f(k − k

′
)dk

′

Here, the symbol ⊗ stands for the convolution operation and E is the energy of the
electron at the moment of decaying.

The interaction between a b-particle with energy E, the WGTS system and the spec-
trometer must include the transmission function, probabilities of 0-scattering up to 4-
scattering and their respective energy losses. This interaction can be summarized as
follows:

fres(E, qU) =
∫ E/2

0
T (E − k, qU) {P0δ(k) + P1f(k) + P2(f ⊗ f)(k) + ...} dk (3.7)

Function (3.7), called response function from now on, will describe mathematically the
experimental setup. Since the summation over the probabilities of scattering in (3.7) goes
on up to P4, the terms with P3 and P4 are convoluted convolutions and so forth.

Given a retarding potential qU , the magnetic fields as in (3.2) and an electron which
gets out of the decay with energy E, the response function gives us the probability that
this electron has to reach the detector after having suffered some scattering processes in
the source and having gone across the spectrometer.

The shape of function (3.7) is shown in Fig. 3.8 where it is possible to observe how the
probability of transmission grows up as the energy of the electron increases. The plateau
at the very beginning can be identified with those electrons that do not have sufficient
energy to pass through the system after having one scattering. Thus, detected electrons
with that energy will cross the setup without any scattering.

The functionality of this tool is twofold:

- On the one hand, it serves to characterize the interaction between electrons and the
spectrometer

- and on the other, it solves the systematic uncertainty of the energy loss inside the
WGTS, meanwhile reproduces the relation between electrons and the tritium source.

3.3 Background events

The origin of background has been extensively studied by the Mainz group [35, 24, 23, 38].
A very detailed summary is given in the KATRIN Design Report [22].

3 Measurement of the decay rate 27

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100

P
ro

ba
bi

lit
y

[E - qU] (eV)

Transmission probability for the KATRIN setup

Figure 3.8: Response function for the KATRIN setup.

In summary, we can say that ionization of residual gas can be completely suppressed
by working with ultrahigh vacuum p < 10−10mbar if no traps for electrons are present in
the spectrometer. The large number of electrons created at the surface of the electrodes
(in KATRIN on the wall of the spectrometer vessel) are almost completely shielded from
reaching the detector by the magnetic field.

A very important improvement in this shielding was achieved by introducing a set of
electrodes formed by thin wires covering only 3% of the surface. By a guard potential these
electrodes supress the electrons from the massive electrodes and reduce the background. In
the Mainz experiment this method led to an enhancement in the decrease of background of
a factor 20 [24]. The background rate due to the environmental radioactivity amounts to
< 2 mHz. The design parameters for KATRIN establish an expected average background
rate of:

Γb = 10 mHz

which is in agreement with the experience from Mainz and Troitsk. Nevertheless, there
exists no way to estimate analytically the exact quantity and therefore we have to rely on
the experience with the Mainz and Troitsk experiments.

This rate seems to be independent of the applied retarding potential within the en-
ergy window we are interested in. In consequence, the spectrometer does not act as an
integrating filter when dealing with background electrons.

3.4 Measurement of the decay rate

Let us gather all the experimental features previously explained in order to calculate
the number of detected electrons. The experimental properties already inserted into the
spectrum are:

- The measurement was restricted to those electrons which travel within a given solid
angle.

28 The KATRIN experiment

- Only the decays placed in points of the source that can be potentially guided by
magnetic lines which end in the detector were chosen.

Other experimental characteristics are:

- The number of atoms in the source. In section 3.2 it was shown that the column
density of the tritium source is ρd = 1017atoms/cm2.

- The isotopic purity of the source. It was pointed out that the tritium source is 95%
pure, εT = 0.95 1.

- The detector used in KATRIN has a 90% efficiency, εd = 0.9.

All this information can be gathered into the constant K in the differential decay
equation, since the corrections we just talked about are independent of the energy:

d2N

dEdt
= K

∑

i

Wi · F (εi, y)pe · Eetot · εi ·
√

εi
2 −m2

ν · θ(εi −mν) (3.8)

with K = G2
F

cos2θC |M |2
2π3~7c5

1−cosθmax
2

BA
BS

πR2
A ρd εT εd.

Thus, we have considered not only the fundamental decay but the real experiment by
counting the number of molecules, the isotopic purity, the detector efficiency, the accepted
solid angle, and the proper section of the source.

On the other hand, the interaction between electrons and the setup was given in
(3.7). Now, let us simulate the measured rate by integrating the number of electrons
that overcome the spectrometer and hit the detector as well as considering the rate of
background. If one sets the retarding potential in qU during the time tU and considers
that the background is independent of the time, during the time tU the measured rate
would be:

S(qU, tU) = tU

(∫ E0

qU
fres(qU,E)

d2N

dtdE
dE + Γb

)
(3.9)

This way of calculating the measured rate will be the starting point to perform Monte
Carlo simulations of KATRIN as we shall explain in the following chapter.

1Mixed molecules containing tritium are of concern as they have slightly different rotational vibra-

tional states. They may be included at a later stage when their fraction is determined by Raman laser

spectroscopy.

Chapter 4

Simulations of the KATRIN

experiment

A simulation package which reproduces the KATRIN experiment under the Monte Carlo
(MC) method point of view has been developed. Such a tool enables us to create simulated
experimental data by following a physical model. Later on, the experimental information
can be fitted by choosing either the same theoretical model or a different one. When
creating the experimental data with its statistical fluctuations, some hypothetical values
for the free parameters of the experiment must be established. After fitting these data, the
MC results should in principle look like Gaussian distributions for each free parameter,
whose center will provide the value yielded by the experiment. Their standard deviations
will serve to calculate the sensitivity of the experiment for each parameter. This method
includes possible statistical fluctuations which are based on the fact that a real independent
measurement would produce different results if repeated. The determined measurement
would therefore be the mathematical weighted average over all measurements.

This simulation tool has been programmed (see Appendix B) with the C++ program-
ming language. The final version interacts very often with a package already made by the
GNU project. To reach the most efficient performance, some numerical computing tech-
niques and external algorithms have been tested, mainly the ones included in the MINUIT
package of CERN and the GSL (GNU scientific library). Despite of having several tools
for integrating mathematical functions in the GSL library, the Bode’s rule algorithm for
integration was specifically implemented for convenience. Its precision has been checked to
avoid any unpleasant behaviour. The package can be easily run on any LINUX operating
system with the standard g++ compilers and the instalation of the GSL library. Some
input files for the KATRIN setup are needed, basically the data for the organization of the
measurement points (retarding potentials qU , measurement times tU) and the information
of the final state distribution (FSD) of the daughter molecule in the 3T(β−)3He decay.

4.1 Calculation procedure

The information which will be explained in the following concerns how to construct the
KATRIN MC simulation. The method is common for all problems mentioned previously,
either SM or Non SM treatments of the tritium beta decay. For the sake of simplicity
and generalization, the differential decay distribution in this section will be represented
by d2N

dEdt which could refer to any theoretical description of the spectrum.

30 Simulations of the KATRIN experiment

As stated before, it is possible to create simulated experimental data by integrating
the decay spectrum and considering the interaction between the b-particles, the WGTS
source, and the spectrometer. Some background rate has to be taken into account as well.
Coming back to that idea, by setting the retarding potential to the value U during the
time tU and some background rate Γb (usually 10 mHz), the expected number of detected
events would be:

S(qU, tU , p1, .., pq) = tU

(∫ E0

qU
fres(qU,E)

d2N

dtdE
dE + Γb

)
(4.1)

where the variables on which the quantity S depends are explicitely written. Some of
them have to be understood as variables of the decay distribution d2N

dtdE , some others
allude to experimental features like background. The periods are purposely emphasized
to remark that S could be created by considering different models, since, the number of
free parameters and the free parameters themselves are different for each model.

The simulated data of Eq. (4.1) is lacking the intrinsic statistical behaviour of a
real measurement. It is known that in an experiment the repeated measurements of the
same magnitude disagree with each other by the influence of intrinsic unavoidable factors.
Experience tells us, that these measurements are almost always distributed around the real
physical value in Gaussian distributions centered on it. Thus, in order to produce properly
simulated experimental data, it sounds reasonable to spread randomly the quantity in (4.1)
in a Gaussian distribution centered on itself. The standard deviation chosen to spread S

is
√

S. Thus, a measurement in which statistical fluctuations are considered could for
instance be:

Mexp(qU, tU , p1, .., pq) = S(qU, tU , p1, .., pq) + Randomizer
(√

S(qU, tU , p1, .., pq)
)

(4.2)

where qU , tU and p1 .. pq are the variables on which S depends and Randomizer is an
algorithm that spreads S with a standard deviation

√
S(qU, tU , p1, .., pq). It is interesting

to remark that all algorithms like this need an initializer number (seed) after which the
algorithm generates the same sequence of so-called quasi-random numbers. Therefore,
these algorithms rely very strongly on the seed. To avoid any bias on the MC simulation,
it would be very appropriate to break this dependence. A very useful trick in this sense is to
use the “time.h” library with which the seed is started up with the number of seconds gone
by since 1st January 1970. Therefore, by running the simulation many times, the result
of the independent runnings is never repeated and the bias gets broken. Thus, it does not
make much sense to emphasize the variables Mexp depends on since the relation between
the function and the variables is not univocal due to the presence of the randomizer
function.

The KATRIN protocol establishes that several measurements in different values of the
retarding potential have to be done in the studied energy region to fit the data and to
conclude a neutrino mass. For example, when analyzing within the energy range from 20
eV below the endpoint to the endpoint, the protocol has been set to have 31 measurement
points distributed in several values of qU with different times tU . Actually, some of them
are carried out above E0 to study more precisely the background component. That set of
data can be fitted to deduce the actual values of the free parameters that generated the
mentioned 31 measurements. This kind of fitting procedure is accomplished by means of

4 Calculation procedure 31

the well-known Chi-Square method using:

χ2(r1, .., rl) =
n∑

i=1

[
Mexpi −Mtheoi(r1, .., rl)√

Mtheoi(r1, ..., rl)

]2

(4.3)

where both the theoretical function and the Chi-Square function depend on l free param-
eters called r. The χ2 function is calculated by adding up the data of n measurements
in different retarding potentials U . This fitting method assumes that the set of r1, .., rl,
which produces the minimum value of χ2 summarizes the real value of the parameters.
With the aim of making the method clear, it is important to explain the dependence of
functions on variables. Note that χ2 and Mtheo depend on the same variables. The de-
pendence of the experimental data on their inner variables has been removed due to the
randomizer function. Therefore, from now on, when talking about dependences of Mexp

it is understood that we are refering to the model chosen to create it. Hence, Mtheo and
Mexp can have either different dependences or the same ones. This has the enormous
advantage of offering the possibility of mixing models, i.e., creating data with one model
and analyzing with another model, which is very useful to check the potential systematic
uncertainties related to mixing up different theories.

In order not to get confused with the procedure, it is better to forget how the experi-
mental information was generated and simply to assume that a set of experimental data
is available to be fitted. Nothing is known about the actual value of the free parame-
ters p1, .., pq that originated these measurements. Only the values of qU and tU used to
measure Mexp are known.

The Chi-Square method gives back fitted data by trying many Mtheo and looking for
the one that leads to the minimum value of the Chi-Square function. The Mtheo values are
the expected decay rates on the qU retarding potentials during the times tU . In general,
they are computed like:

Mtheo(qU, tU , Rs, Rb, p1, ..., pq) = tU

(
Rs

∫ E0

qU
fres(qU,E)

d2N

dtdE
dE + RbΓb

)
(4.4)

where two new free parameters Rs and Rb have been introduced to let both the decay rate
and the background fluctuate.

Let us discuss it with an example. With this kind of simulation it is possible to create
decays which follow physics of any of the theoretical models explained in Ch. 2. For
instance, by choosing the SM and the last 20 eV of the spectrum as interesting region, a
set of 31 integrated rates is produced with:

d2N

dEdt
= K

∑

i

Wi · F (εi, y)pe · Eetot · εi ·
√

εi
2 −m2

ν · θ(εi −mν) (4.5)

This type of spectrum leads to the following rates:

S(qU, tU , E0,m
2
ν) = tU

(∫ E0

qU
fres(qU,E)

d2N

dtdE
dE + Γb

)
(4.6)

which must be randomly spread to yield the simulated experimental data:

Mexp = S(qU, tU , E0, m
2
ν) + Randomizer

(√
S(qU, tU , E0,m2

ν)
)

(4.7)

32 Simulations of the KATRIN experiment

Note again that Mexp has no explicit dependences. These measurements could now be
analyzed with several models, for instance, the SM choice would produce the following
Chi-Square:

χ2(E0,m
2
ν , Rs, Rb) =

n∑

i=1

[
Mexpi −Mtheoi(E0,m

2
ν , Rs, Rb)√

Mtheoi(E0,m2
ν , Rs, Rb)

]2

(4.8)

which is a four dimensional function of which one has to find the global minimum. To
obtain a conclusion on the MC simulation, the calculation in (4.8) has to be repeated many
times with the same fixed input parameters. In every independent run of (4.8), the action
of the randomizer in the experimental data will produce different global minima in Chi-
Square. When repeating the randomization in Mexp with the same input in S, a different
measurement of the same quantity is being carried out, leading to little changes on χ2.
Therefore, the global minimum is located in different values of E0, m2

ν , Rs, Rb for each χ2

surface. This process leads for the free parameters to Gaussian distributions centered on
the input, i.e., centered on the actual value of the parameters. As an illustrative example,
Fig. 4.1 shows the result for the endpoint fit after running 5000 times the simulation.
This number of experiments has been set as a standard for the MC simulations in this
work. The experimental data of Fig. 4.1 was produced by setting E0 to 18575 eV. The
measurements are spread around the actual value of the endpoint leading to a Gaussian
distribution whose standard deviation will give the sensitivity of the KATRIN experiment
on this parameter by considering SM physics.

Figure 4.1: Typical output of the endpoint measurement in a Monte Carlo simulation of KATRIN.

For the other parameters similar functions were obtained. Note, that the fitting is
done for all free parameters at the same time. Since the MC output is centered on the
input, the package is considered to be working properly. Another test for the fitting
process is the value of the Chi-Square function. Its 5000 different values are sorted not in
a Gaussian distribution but in a Chi-Square one. Furthermore, its mean value must be
near the number of measurements minus the number of free parameters [39], although the

4 KATRIN simulations within the Standard Model 33

presence of correlations between parameters could break this statement. In the example
shown in Fig. 4.2 the Chi-Square mean value should be 27 (31 measurements minus 4 free
parameters) whereas the found value is 27.18. Thus, there is a good agreement between
the expected Chi-Square and the obtained one.

Figure 4.2: Typical output of the Chi-Square result in a Monte Carlo simulation of KATRIN when

measuring in the last 20 eV.

4.2 KATRIN simulations within the Standard Model

After building the necessary tool, the first calculation has to be related to the sensitivity
of the experiment when the data is analyzed with physics of the SM. The reason why
this is a good starting point is that the SM decay is the simplest description since it
deals with the smallest number of free parameters. Furthermore, there are other older
simulations that already computed these sensitivities with which one can compare the
MC result. Therefore, it serves also as a test to check whether the simulation code has
been written properly. We worked with the following decay distribution, both to create
the experimental and the theoretical data:

d2N

dEdt
(E0,m

2
ν) = K

∑

i

Wi · F (εi, y)pe · Eetot · εi ·
√

εi
2 − m2

ν

m2
e

· θ(εi − mν

me
) (4.9)

In the SM, the Chi-Square function depends on four variables, E0, m2
ν , Rs and Rb. One

has to look for the best combination of these parameters which leads to the minimum
of Chi-Square. At this point, the unsolved problem is to find that minimum. There are
many ways to look for the global minimum. In this case, within the SM, a very practical
and simple routine was chosen, even though it was not a very efficient algorithm. It
consists on building a 4-dimensional grid with many fixed points in which Chi-Square
is computed. Later on, all values are compared and the minimum one is claimed to be
the global minimum of Chi-Square. Thus, by varying the numerical values of the four

34 Simulations of the KATRIN experiment

free parameters of Mtheo within given intervals, a grid is constructed to produce many
computations of Chi-Square.

An example of the performance of this method is shown in Fig. 4.3 where the sensitivity
of the experiment to the four free parameters can be deduced. The input was created with
E0 = 18575 eV, m2

ν = 0.1225 eV2, Rs = 1 and Rb = 1 which is around the KATRIN
discovery potential on mν .

Figure 4.3: Sensitivity of the experiment on E0 (top left), m2
ν (top right), Rs (botton left) and Rb

(botton right) when creating and analyzing data with physics of the SM. The input was E0 = 18575 eV,

m2
ν = 0.1225 eV2, Rs = 1 and Rb = 1.

The good behaviour over all variables predicts a good performance of the package.
Note, the binning in the background variable is bigger compared to the others. This is
because a smaller number of points in this variable was set up when the 4-dimensional
grid was constructed. The reason why this variable was treated differently is, that the
grid method is quite inefficient from the computational point of view, i.e., it is very time
consuming. Since, a priori, Rb is the least correlated variable, one expects to fit this
parameter with only a few points whereas the other variables need a finer treatment. The
correlations between parameters quantify how much variables depend on each other, which
is very important to know whether external experiments can improve the sensitivity of
KATRIN, since if a fit parameter can be deduced by an independent experiment one can
in principle use this information to restrict the range in which the parameter is allowed to
vary in the fit. As can be seen in Fig. 4.4, E0, m2

ν and Rs are quite correlated with each

4 KATRIN simulations within the Standard Model 35

other. The background, as expected, is not correlated at all with any other variable.

Figure 4.4: Correlations between the variables of the analysis of the experiment. E0 vs. m2
ν (first row,

left), E0 vs. Rs (first row, right), E0 vs. Rb (second row, left), m2
ν vs. Rs (second row, right), m2

ν vs. Rb

(third row, left) and Rs vs. Rb (third row, right).

It becomes obvious, that the significant correlations occur always between the combi-
nations of E0, m2

ν and Rs. As stated before, the background term is the least correlated
component of the analysis, so by choosing a few points in its description we did not make
any systematic error.

36 Simulations of the KATRIN experiment

The next step is to calculate the experimental sensitivity on the neutrino mass when
the input is a vanishing neutrino mass. This will give the potential new upper limit of
the neutrino mass. When working with such an input, it is expected to find a Gaussian
distribution on the neutrino mass centered on 0 eV2. This means that half of the distri-
bution falls in the negative region of m2

ν which is not in contradiction with the already
found experimental results [20, 21], although no physical meaning is accepted within the
SM. Some hints about the treatment of this problem beyond the SM have already been
given. Now, the important point is to create for that region some decay rate physically
meaningless but statistically useful to calculate the sensitivity. The following definition of
the spectrum has been followed with success:

d2N

dEdt
=





K
∑

i Wi · F (εi, y)pe · Eetot · εi ·
√

εi
2 −m2

ν · θ(εi −mν) m2
ν ≥ 0

K
∑

i Wi · F (εi, y)pe · Eetot · εi ·
√

εi
2 −m2

ν · θ(εi) m2
ν < 0

(4.10)

where for the negative part the Heaviside function does not take care of the neutrino
mass value. Note that a negative m2

ν would lead to an imaginary mν . This definition
makes Chi-Square be continuous in the transition for the positive to the negative part
of m2

ν . Under these conditions, the simulation has been run many times to estimate the
sensitivities when measuring during 3 years in the last 20 eV, 25 eV, 30 eV, 40 eV and
50 eV. The results for the endpoint and the neutrino mass are given in Fig. 4.5-4.9, the
correlations are similar to the ones already shown. χ2, Rs and Rb behaved properly for
all these simulations.

Figure 4.5: Sensitivity of the experiment on E0 (left) and m2
ν (right) when creating and analyzing data

with physics of the SM. The measurement time is around 3 years. The lowest retarding potential was

placed in 20 eV below the endpoint. The input was E0 = 18575 eV, m2
ν = 0 eV2, Rs = 1 and Rb = 1.

4 KATRIN simulations within the Standard Model 37

Figure 4.6: Sensitivity of the experiment on E0 (left) and m2
ν (right) when creating and analyzing data

with physics of the SM. The measurement time is around 3 years. The lowest retarding potential was

placed in 25 eV below the endpoint. The input was E0 = 18575 eV, m2
ν = 0 eV2, Rs = 1 and Rb = 1.

Figure 4.7: Sensitivity of the experiment on E0 (left) and m2
ν (right) when creating and analyzing data

with physics of the SM. The measurement time is around 3 years. The lowest retarding potential was

placed in 30 eV below the endpoint. The input was E0 = 18575 eV, m2
ν = 0 eV2, Rs = 1 and Rb = 1.

38 Simulations of the KATRIN experiment

Figure 4.8: Sensitivity of the experiment on E0 (left) and m2
ν (right) when creating and analyzing data

with physics of the SM. The measurement time is around 3 years. The lowest retarding potential was

placed in 40 eV below the endpoint. The input was E0 = 18575 eV, m2
ν = 0 eV2, Rs = 1 and Rb = 1.

Figure 4.9: Sensitivity of the experiment on E0 (left) and m2
ν (right) when creating and analyzing data

with physics of the SM. The measurement time is around 3 years. The lowest retarding potential was

placed in 50 eV below the endpoint. The input was E0 = 18575 eV, m2
ν = 0 eV2, Rs = 1 and Rb = 1.

It is interesting to note that the deeper the analysis is done the better is the accuracy
found in both the endpoint and the neutrino mass. The experimental sensitivity (1.64485
σ) on the neutrino mass and the discovery potential (5 σ) of the experiment are summarized
in Table 4.1, where the standards 90% C.L. (1.64485 σ) and 99.9999% C.L. (5σ) have been
followed.

4 KATRIN simulations within the Standard Model 39

E(eV) σm2
ν

(eV2) 1.64485σm2
ν

(eV2) 5σm2
ν

(eV2) 1.64485σmν (eV) 5σmν (eV)
20 0.0209 0.0343 0.104 0.185 0.323
25 0.0188 0.0310 0.0941 0.176 0.307
30 0.0175 0.0288 0.0875 0.170 0.296
40 0.0156 0.0257 0.0782 0.160 0.280
50 0.0143 0.0235 0.0716 0.153 0.268

Table 4.1: KATRIN sensitivity (column 5) and discovery potential (column 6) on the neutrino mass for

different energy ranges (only statistical errors).

Table 4.1 contains information for the neutrino mass square and the neutrino mass.
Some of the data of Table 4.1 are summarized in Fig. 4.10 where the change of sensitivity
and discovery potential are shown as functions of the studied energy range. Both quantities
get improved when the analysis is carried out over a bigger energy range in the spectrum.
The reason for improving the limit on mν for larger energy ranges is the high statistics of
the points further away from the endpoint. This advantage, however, is overcompensated
by the increasing systematic uncertainties of these data, which are not taken into account
in this simulation. We can introduce systematic uncertainties by assuming that after 3
years of measurement systematic and statistics contribute equally to the error for the 30
eV interval. To consider also the systematic uncertaintites, the statistical 5σm2

ν
value is

multiplied by
√

2 to yield a new 5σm2
ν

which takes into account both error sources, leading
to a discovery potential limit of 0.352 eV as against 0.354 eV for the value extracted from
the KATRIN Design Report [22]. The insignificant third digit should be omitted leading
both cases to 0.35 eV. It can also be seen that the sensitivities obtained by means of this

Figure 4.10: Contribution of the statistical uncertainty to the sensitivity and discovery potential as a

function of the energy region.

MC simulation are even better than those published in the KATRIN Design Report [22].
This is due to the fact that some systematic uncertainties have not been considered in this
simulation, like fluctuations of the retarding potential, fluctuations in the column density,
or other energy changes in the b-particles like the ones produced by the recoil energy of
the daughter molecule, etc.. Among them, the most important one is the fluctuation and
uncertainty of the retarding potential. The present experimental limit on the endpoint
of tritium beta decay establishes an uncertainty of ±1.7 eV [40]. The MC results shown

40 Simulations of the KATRIN experiment

above reduce this sensitivity to about ±10 meV, i.e., ∆E0 gets improved by two orders
of magnitude. However, no claims regarding these improvements were done because no
considerations on the uncertainty of the retarding potential were included. Once this is
taken into account, the endpoint uncertainty will be increased again up to the uncertainty
of the retarding potential. This retarding potential uncertainty has been set around ±300
meV [41] which is far from the MC result. Nevertheless, a very improved high-precision
Penning trap measurement of the Q value of 3T(β−)3He decay [42] is planned to be carried
out during the coming years, which could help to reduce systematic errors in KATRIN if
the measurement of Q is within the uncertainty of the retarding potential.

4.3 KATRIN simulations beyond the Standard Model

Results obtained by means of this MC package concerning physics beyond the SM are ex-
plained in this section. The main attention has been led to the Non V-A problem whereas
the problem with tachyonic neutrinos has also been solved. Regarding the violation of
Lorentz invariance there are no results to talk about since the problem was only imple-
mented into the package without finding any result due to the lack of time. Nevertheless,
we want to remark that everything is ready to run and to find interesting approaches to
this problem.

4.3.1 Non V-A structure

To deal with the Non V-A problem the calculation procedure of section 4.1 has been
followed. The simulation concept is exactly the same which was explained in the previous
section, except for the decay rate which had to be changed to include Non V-A physics.

The new spectrum was already obtained in Ch. 2, although no description was found
for the negative region of the neutrino mass square. As it was explained, this region has to
be well-defined, because of the statistical fluctuations of the data. No physical meaning is
attributed to it neither within the SM nor within the Non V-A problem, but it is necessary
to have such a description in order to find a proper Gaussian distribution when the input
is a vanishing m2

ν .
The new decay rate is:

d2N

dEdt
=





K
∑

i Wi · F (εi, y)pe · Eetot · εi ·
√

εi
2 −m2

ν · θ(εi −mν)
[
1 + δ mν

εi

]
m2

ν ≥ 0

K
∑

i Wi · F (εi, y)pe · Eetot · εi ·
√

εi
2 −m2

ν · θ(εi)
[
1 + δ mν

εi

]
m2

ν < 0
(4.11)

where the relationship between the new quantity mν and the old parameter m2
ν has been

always treated like mν =
√
|m2

ν |, so that m2
ν keeps being the free parameter. Note again,

a new free parameter δ has been introduced to handle the Non V-A physics, since this
δ contains combinations of coupling constants of the Tensor and Scalar currents among
others.

The steps to follow should in principle be the ones followed in the SM case, with the
final objective of finding the new KATRIN sensitivity and discovery potential. The same
mathematical treatment (Chi-Square) was chosen and a five-dimensional grid (one more
free parameter than in the SM case) was built to look for the minimum of Chi-Square.
However, the actual situation turned out to be very different, since many problems came

4 KATRIN simulations beyond the Standard Model 41

up right after introducing the new physics. These problems can be summarized in the fact
that no Gaussian distributions were found at all, and instead chaotic distributions not
even centered on the input were obtained. The same behaviour in the outputs was found
independently of the input. This problem was at the beginning interpreted as a bug in
the MC package and a lot of efforts were directed to find and fix it, although later on it
was demonstrated that the problem came from a deeper reason, i.e., correlations between
parameters. When having this kind of problem it seems to be very reasonable to reduce
the number of possible error sources. For that purpose, the Fermi and Sirlin function were
deactivated as well as the interaction with the spectrometer (response function) and the
final states distribution (FSD) of the daughter molecule. In addition, the studied energy
range was restricted to the last 20 eV of the spectrum once it was checked that the MC
results did not depend on the studied energy region. Therefore, the spectra were directly
integrated with analytical integrals which reduced very much the computing time although
did not improve the MC outputs. At this point, the study on the influence of Non V-A
currents on tritium beta decay became more a qualitative study than a quantitative one.
The integrated decay necessary to the Chi-Square computation was analytically handled
from here on. From (4.11) a new integrated spectrum was derived, both for the positive
and the negative regions of m2

ν . By integrating (4.11) and applying Barrow’s rule taking
special care of the Heaviside function, from qU (the retarding potentail) to E0 in both
regions:

N(E0, m
2
ν , δ, qU) =





K
[

1
3Ω

3
2 + δmν

(
Λ
√

Ω−m2
ν ln

(
Λ+

√
Ω

2

))]
m2

ν ≥ 0

K
[

1
3

(
Ω

3
2 − (−m2

ν)
3
2

)
+ δmν

[
Λ
√

Ω + m2
ν ln

(
2mν

Λ+
√

Ω

)]]
m2

ν < 0
(4.12)

here Λ = E0− qU and Ω = Λ2−m2
ν . The electron energy and momentum were taken out

of the integral and treated as constants without making a big error, so the factor KpeEetot

must be understood in K. With the computation of the integrated spectrum, taking into
account the measurement time tU and the background rate, Chi-Square is calculated as
explained before. All the simplifications in the spectrum did not lead to any success when
finding the sensitivity of the experiment. However, in order to know how dangerous it is
not to take into account the right currents problem, it was checked how much a Non V-A
spectrum influences on a SM analysis, i.e., what happens if the experimental information
is fitted with the SM whereas the actual spectrum follows Non V-A physics. This mixture
of theoretical approaches can be done by creating decays with Non V-A and analyzing
them with SM, i.e, creating with a non vanishing δ and analyzing with δ = 0. When
doing this, it was found out that the KATRIN measurement would always be shifted with
respect to the real value of the parameters. Fortunately, the shift is mainly carried by the
endpoint and not so strongly by the neutrino mass square. This makes sense, since E0 and
δ seemed to be very correlated and therefore, misleadings in any of these two parameters
would produce misleadings in the other one as well. This analysis of the influence of a
δ 6= 0 in a SM fit was carried out in the last 20 eV of the spectrum. Several cases for
different values of δ within its actual experimental limits [-0.28 , +0.28] were studied.
Beside the shift of the parameters E0 and m2

ν , the KATRIN sensitivities σE0 and σm2
ν

were computed. This calculation was done by running the MC package many times for
the following inputs.

42 Simulations of the KATRIN experiment

E0 = 18575 eV;

m2
ν = 0 eV2, m2

ν = 0.1 eV2, m2
ν = 0.2 eV2, m2

ν = 0.3 eV2, m2
ν = 0.4 eV2, m2

ν = 0.5 eV2,
m2

ν = 0.6 eV2, m2
ν = 0.7 eV2, m2

ν = 0.8 eV2, m2
ν = 0.9 eV2, m2

ν = 1 eV2, m2
ν = 1.5 eV2,

m2
ν = 2 eV2, m2

ν = 2.5 eV2, m2
ν = 3 eV2, m2

ν = 3.5 eV2, m2
ν = 4 eV2;

δ = −0.3, δ = −0.2, δ = −0.1 δ = 0 (SM), δ = +0.1, δ = +0.2, δ = +0.3,

and all possible combinations between them.
The obtained results concerning the shift on neutrino mass square, endpoint and their

respective standard deviations are shown in Fig. 4.11-4.14 .

Figure 4.11: Shift on the SM fit of m2
ν as a function of the real m2

ν and δ. Each line corresponds to

individual values of δ. From top to bottom: δ = +0.3, δ = +0.2, δ = +0.1, δ = 0 (SM), δ = −0.1,

δ = −0.2, δ = −0.3.

The positive conclusion from these plots is that both the sensitivity on the neutrino
mass square σm2

ν
and the endpoint σE0 do not change too much either with δ or the actual

m2
ν . The negative conclusion is, that unfortunately, if physics actually follows the Non

V-A theory and the experiment is fitted with the SM, an unpleasant shift will be found
for m2

ν . Let us examine the worst cases when δ ∼ +0.3 or δ ∼ −0.3, near the KATRIN
discovery potential (mν = 0.35 eV). Close to this value is one of the chosen values of the
study, mν = 0.33 eV, i.e., m2

ν = 0.1 eV2. For δ = +0.3 the measured value on m2
ν would

be shifted around 20%, whereas for δ = −0.3 the shift is around 12%. Therefore, an exact
fit which includes Non V-A physics is needed, although the correlation between E0 and δ

seems not to allow to fit it.

To solve the problem when analyzing with Non V-A physics, some investigations on
the Chi-Square shape led to the conclusion that the problem came from a wrong method
when looking for the global minimum of the function. Therefore, the employment of
the grid method was given up, due to the fact that it is not only inefficient at finding
the global minima but also very slow. These global minimum finding problems occur very
often when the correlations between parameters are very strong. It produces on the object
surface either a lot of local minima or very flat zones, which makes the solution be hidden.

4 KATRIN simulations beyond the Standard Model 43

Figure 4.12: Shift on the SM fit of E0 as a function of the real m2
ν and δ. Each line corresponds to

individual values of δ. From top to bottom: δ = +0.3, δ = +0.2, δ = +0.1, δ = 0 (SM), δ = −0.1,

δ = −0.2, δ = −0.3.

Figure 4.13: Shift on the SM fit of σm2
ν

as a function of the real m2
ν and δ. Each line corresponds to

individual values of δ: δ = +0.3, δ = +0.2, δ = +0.1, δ = 0 (SM), δ = −0.1, δ = −0.2, δ = −0.3.

From this point, after realizing that there was a very difficult technical problem, it was
decided that the solution, i.e. the global minimum of the χ2, has to be found by using
another kind of algorithm when looking for the minima. Many different algorithms have
been tested causing a lot of rewriting of the code for each of them. In the following, all
the algorithms that were tested are summarized. They are sorted as they were checked.
Most of them belong to the GSL (GNU Scientific library) [43] and MINUIT (CERN) [44]
packages, and some of them delivered some improvement which was interpreted as a proof
of being well-led to the solution. These algorithms are briefly explained. In some cases
the original sources of [43, 44] are quoted:

- The grid method: It has already been explained and delivered no improvement at

44 Simulations of the KATRIN experiment

Figure 4.14: Shift on the SM fit of σE0 as a function of the real m2
ν and δ. Each line corresponds to

individual values of δ: δ = +0.3, δ = +0.2, δ = +0.1, δ = 0 (SM), δ = −0.1, δ = −0.2, δ = −0.3.

all.

- The simplex algorithm of Nelder and Mead: It constructs over the surface a hyper-
triangle with n+1 vertices in which the global minimum is looked for. n is the number of
dimensions of the problem. This algorithm already gave some improvement [43].

- The Fletcher-Reeves conjugate gradient algorithm: It proceeds as a succession of line
minimizations. The sequence of search directions is used to build up an approximation to
the curvature of the function in the neighborhood of the minimum [43]. No improvements
were found in comparison to the simplex treatment.

- The Polak-Ribiere gradient algorithm: It is similar to the Fletcher-Reeves method,
differing only in the choice of the coefficient β which serves to update the search direction
[43]. No improvements were found in comparison to the simplex treatment.

- The vector Broyden-Fletcher-Goldfarb-Shanno conjugate gradient algorithm: It is a
quasi-Newton method which builds up an approximation to the second derivatives of the
function using the difference between successive gradient vectors [43]. No improvements
were found in comparison to the simplex treatment.

- The steepest descent algorithm. This algorithm follows the downhill gradient of the
function at each step. When a downhill step is successful the step-size is increased by a
factor of two. If the downhill step leads to a higher function value then the algorithm back-
tracks and the step size is decreased using the parameter tolerance [43]. No improvements
were found in comparison to the simplex treatment.

- The Levenberg-Marquardt algorithm. It is a special method for Non-linear least-
squares fitting. The algorithm uses a generalized trust region to keep each step under
control. In order to be accepted, a proposed new position x′ must satisfy the condition
|D(x′ −x)| < λ, where D is a diagonal scaling matrix and λ is the size of the trust region.
The components of D are computed internally, using the column norms of the Jacobian to
estimate the sensitivity of the residual to each component of x. This improves the behavior

4 KATRIN simulations beyond the Standard Model 45

of the algorithm for badly scaled functions. On each iteration the algorithm attempts to
minimize the linear system |F + Jp| subject to the constraint |Dp| < ∆. The solution
to this constrained linear system is found using the Levenberg-Marquardt method. The
proposed step is now tested by evaluating the function at the resulting point, x′. If the
step reduces the norm of the function sufficiently, and follows the predicted behavior of
the function within the trust region, then it is accepted and the size of the trust region is
increased. If the proposed step fails to improve the solution, or differs significantly from
the expected behavior within the trust region, then the size of the trust region is decreased
and another trial step is computed [43]. This algorithm led to a huge improvement and
allowed to fit the experimental data. At the beginning, only inputs bigger than m2

ν = 0.2
eV2 could be fitted. Therefore, it served for guaranteeing that the correlations between
some parameters are extremely strong, specially between the endpoint and the Non V-A
factor.

- MIGRAD: This is the MINUIT main algorithm recommended for nearly all functions.
It is a variable-metric method with inexact line search, a stable metric updating scheme,
and checks for positive-definiteness [44]. No improvements were found in comparison to
the Levenberg-Marquardt case.

- MnMinimize and CombinedMinimizer: These are the MINUIT tools which use MI-
GRAD and call Simplex if MIGRAD fails [44]. No improvements were found in comparison
to the Levenberg-Marquardt case.

- The Fumili algorithm: This is a specialized minimizer for Chi-Square and likelihood
fits, that uses the property of these functions to estimate the Hessian matrix and in general
it converges faster (with less iterations) to the minimum [44]. No improvements were found
in comparison to the Levenberg-Marquardt case.

As will be shown later in this chapter, the correlation between δ and E0 is so strong
that some of the above algorithms could not find the global minimum of Chi-Square even
when E0 was fixed, i.e., not even when assuming during the fitting that the endpoint is
perfectly known.

Fortunately, the Levenberg-Marquardt algorithm is almost able to solve perfectly the
problem. Therefore it has been chosen as the proper routine to deal with the Non V-A
problem. When working with it, in the case that the input m2

ν is far enough away from
a vanishing value, the results are very good. If the input is very close to 0, then it is still
possible to find some bias in the solution, although further improvements can be done in
this direction.

The solution to this problem came up first for big inputs m2
ν ∼ 4 eV2. The present

experimental limit on m2
ν was established by the Mainz experiment [21] around 5.3 eV2,

so that a neutrino mass square slightly smaller than this should be measured by KATRIN.
It is then interesting to check the reaction of KATRIN from a vanishing neutrino mass to
the present experimental limit. Let us have a look to some cases (see Fig. 4.15-4.17).

Plots for Chi-Square, Rs and Rb are not shown since they are less relevant and their
distributions were as expected. As it was supposed, the correlation between E0 and δ

is very strong since their relationship is almost a straight line, which causes the search
for the global minimum to be a very difficult technical problem to solve. The correlation
between E0 and m2

ν has also become stronger than the one found within the SM. The
standard deviation for E0 and for m2

ν has grown dramatically. Fortunately, the standard

46 Simulations of the KATRIN experiment

Figure 4.15: MC results in a KATRIN Non V-A analysis for the input E0 = 18575 eV, m2
ν = 4 eV2,

δ = 0. Distribution for the endpoint (first row, left), the neutrino mass square (first row, right), and the

Non V-A parameter (second row, left). Correlation between E0 and m2
ν (second row, right), between m2

ν

and δ (third row, left), and between E0 and δ (third row, right).

4 KATRIN simulations beyond the Standard Model 47

deviation of m2
ν depends on the actual value of m2

ν as can be seen in Fig. 4.16 and 4.17,
where the same results are shown for inputs m2

ν = 1 eV2 and m2
ν = 0 eV2.

The same behaviour as the one found for the input m2
ν = 4 eV2 occurs for the input

m2
ν = 1eV2, but with a smaller standard deviation in m2

ν , which means that σm2
ν

actually
depends on the real value of m2

ν . In the latter case, some bias can be noticed on the E0

and δ distributions, since some points are separated from the ideal Gaussian distribution
(black line in Fig. 4.16). The smaller the input in m2

ν is, the more difficult is the search
of the global minimum. Thus, for a vanishing neutrino mass one can expect a bigger bias
than the one found for m2

ν = 1 eV2. Results for this case are shown in Fig. 4.17.
It is surprising that the correlations between the three principal variables E0, m2

ν and
δ have almost been broken when the input corresponds to m2

ν = 0 eV2, whereas the
correlations for other inputs were always very strong. Thus the problem is now solved
although more qualitatively than quantitatively and therefore no conclusive numbers on
the change of the KATRIN sensitivity can be given. As a guide, the SM case was also solved
under the same conditions, the same approximations, by using the analytical integral in
order to compare the change in the standard deviation of m2

ν . The Non V-A case led
to σm2

ν
= 0.1113 whereas the SM led to σm2

ν
= 0.1101. This means that the KATRIN

sensitivity on the neutrino mass is not dramatically changed if the Non V-A physics is
considered. For the discovery potential we can not assert the same.

When calculating the discovery potential within the SM, σm2
ν

was taken out for an
input m2

ν = 0 eV2 and multiplied by a factor of five to get the 99.9999 % C.L. demanded
for a discovery potential. We did that because it was known that σm2

ν
hardly changes as

a function of m2
ν in the SM. Whithin the Non V-A physics, the discovery potential has to

be computed differently since we already know from the MC simulations that σm2
ν

grows
quite a lot when increasing m2

ν . Thus, to know the exact value of the discovery potential,
the package has to be run many times with the purpose of finding inputs which lead to a
distribution separated by 5σ from 0 eV2. It makes more sense to do that when everything
works as desired and approximations can be abondoned. What we can already assert is
that the sensitivity of KATRIN does barely change with Non V-A physics, although the
KATRIN discovery potential may be significantly worse.

A short study about the little remaining bias in the Levenberg-Marquardt algorithm
has been carried out. The point is that this algorithm relies very strongly upon the
accuracy of the derivatives of the function to minimize (Chi-Square in our case) with
respect to the parameters it depends on. Thus, these derivatives play a vital role on
the performance of the algorithm. The more accurate they are, the more reliable the
algorithm is and the faster it works. The results given above were obtained by bringing the
derivatives (calculated numerically) to the maximum allowed precision of regular compilers
and regular computers. This happens because inside computers, numbers can not be stored
with infinite precision. The best data type of regular compilers is the double type (long
double is not supported in most external libraries) which can store numbers up to ±10308

but with limited precision. The maximum number of digits of a cipher in the double data
type is around 16, which limits severely the calculation of any numerical derivative since
they are calculated by increasing and decreasing the function to derive. The good news
in this sense is, that further improvements can be done by working with the so-called
Multiple Precision Arithmetic Libraries [45], which allow to calculate the derivatives with
even better precision. After including this type of library the little bias in the Levenberg-

48 Simulations of the KATRIN experiment

Figure 4.16: MC results in a KATRIN Non V-A analysis for the input E0 = 18575 eV, m2
ν = 1 eV2,

δ = 0. Distribution for the endpoint (first row, left), the neutrino mass square (first row, right), and the

Non V-A parameter (second row, left). Correlation between E0 and m2
ν (second row, right), between m2

ν

and δ (third row, left), and between E0 and δ (third row, right).

4 KATRIN simulations beyond the Standard Model 49

Figure 4.17: MC results in a KATRIN Non V-A analysis for the input E0 = 18575 eV, m2
ν = 0 eV2,

δ = 0. Distribution for the endpoint (first row, left), the neutrino mass square (first row, right), and the

Non V-A parameter (second row, left). Correlation between E0 and m2
ν (second row, right), between m2

ν

and δ (third row, left), and between E0 and δ (third row, right).

50 Simulations of the KATRIN experiment

Marquardt algorithm is expected to disappear and therefore the approximations in the
spectrum can be removed by including again the FSD of the daughter molecule, the Fermi
and Sirlin functions, and the response function of the experimental setup with which the
real KATRIN sensitivity on m2

ν with Non V-A physics could be calculated.

4.3.2 Tachyonic neutrinos

Some studies have been done to find out the KATRIN sensitivity in the case neutrinos
are tachyons. Also a mixed situation between tachyons and the SM was tried out to know
whether it is possible to describe the positive region of m2

ν with the SM and the negative
region with tachyons. Finally, the possibility of mixing up both models in order to look
for potential systematic errors was analyzed.

All these calculations were done only in the last 20 eV of the spectrum. A systematic
study, if necessary, can be still done in deeper ranges. To handle this problem we followed
formula (2.34) in which all corrections are included. Therefore, this case was quantitatively
solved without approximations. Once more, a suitable description for the negative part of
m2

ν must be found. Let us remark that the tachyonic formula for the tritium beta decay
spectrum deals with κ instead of m2

ν . This formula makes sense only when κ2 > 0, which
corresponds to m2

ν < 0, since this model was specifically chosen to describe that range.
Thus, one has to invent some description for the κ2 < 0, which corresponds to m2

ν > 0,
and make it behave continuously with the other part of the function. This was done by
following the experience gained on the SM problem, thus by doing it the other way around:

d2N

dEdt
=





K
∑

i Wi · F (εi, y)Eetotpe

[
εi

2 + εi

√
εi

2 + κ2 + κ2
]
θ(εi) κ2 ≥ 0

K
∑

i Wi · F (εi, y)Eetotpe

[
εi

2 + εi

√
εi

2 + κ2 − κ2
]
θ(εi −

√
|κ2|) κ2 < 0

(4.13)
with which the MC method can be built by following once more the above explanation
about the Chi-Square method.

Now, the point is to determine the KATRIN sensitivity when creating experimental
data with tachyons and analyzing that data with the tachyonic model, i.e., what would
happen if neutrinos are actually tachyons. This problem did not show any minimization
difficulty and therefore it was solved with the grid algorithm, the simplest one when
looking for global minima. Here, the free parameters are E0, κ2, Rs, Rb. Their Gaussian
distributions which look very much like the SM ones, are shown in Fig. 4.18, which were
obtained by using the already typical input E0 = 18575 eV, κ2 = 0 eV2:

The distribution for Chi-Square is of course the expected one, centered in the number
of measurements minus the number of free parameters which is a proof of the good perfor-
mance of the method, the package and the physics involved. Surprisingly, the sensitivity
on the tachyonic neutrino mass is better than the sensitivity on the regular neutrino mass.
In the tachyonic case, σκ2 = 0.01108eV2, which would lead for a 90% C.L. to a sensitivity
on κ of 0.135 eV, whereas the one found in the SM is 0.185 eV. Hence, the discovery
potential would also be improved from 0.32295 eV in the SM to 0.235 eV when handling
tachyons. The correlations between parameters look also very much like the ones found
in the SM. They are shown in Fig. 4.19.

Concerning correlations between parameters, the only slight difference in comparison
to the SM is that the dependence between E0 and κ2 is a bit stronger than the dependence
between E0 and m2

ν .

4 KATRIN simulations beyond the Standard Model 51

Figure 4.18: MC results in a KATRIN tachyonic analysis for the input E0 = 18575 eV, κ2 = 0 eV2.

Distribution for the endpoint (top, left), the tachyonic neutrino mass square (top, right), for Rs(bottom,

left), and for Rb (bottom,right).

52 Simulations of the KATRIN experiment

Figure 4.19: MC results in a KATRIN tachyonic analysis for the input E0 = 18575 eV, κ2 = 0 eV2.

Correlation between E0 and κ2 (first row, left), between E0 and Rs (first row, right), between E0 and

Rb (second row, left), between κ2 and Rs (second row, right), between κ2 and Rb (third row, left), and

between Rs and Rb (third row, right).

4 KATRIN simulations beyond the Standard Model 53

A further step in the study of the tachyonic tritium beta decay spectrum was the
search of possible systematic errors. This was done by creating experimental data with
tachyons and analyzing with the SM, i.e., what would happen if neutrinos were actually
tachyons and the fitting procedure of KATRIN was done with physics of the SM. In this
sense, the solution found by means of the MC simulation is very simple. The result is that
by mixing these two models the obtained values of Chi-Square are very large which serves
to rule out the theoretical model that is being used to fit the experimental data. This
means, that in case neutrinos are actually tachyons and the KATRIN data is fitted with
the SM, we would immediatly realize it because of the large Chi-Square. This behaviour
in Chi-Square was not found when mixing the SM and the Non V-A model. The tachyonic
case offers this kind of advantage. How large must be Chi-Square to be ruled out depends
basically on the standards of confidence levels. An expected mean Chi-Square of 27 like
our case, reaches the 90% C.L. around 37. The values obtained by mixing the SM and the
tachyonic model were much larger and therefore they can be totally ruled out and serve
to realize that the theoretical model used to fit the experimental data is wrong.

Tachyonic neutrinos got into the tritium beta decay topic to explain the m2
ν < 0

region. Thus, a final test was needed for tachyons. It made sense to try to mix both SM
and tachyons now in the theoretical function used to fit the data. The experimental data
is created with the SM and the theoretical functions to fit the data are now split into two
parts. For m2

ν ≥ 0 the SM is used and for m2
ν < 0 the tachyonic model is used. This

combination should work if tachyons are a good explanation for the negative region. Here
again huge values of Chi-Square were found. Sufficiently big to be ruled out too, which
means that something wrong is being done. Consequently, this kind of trick can not be
used.

4.3.3 Violation of Lorentz invariance

The violation of Lorentz invariance theory has been very briefly treated in this study. It
was implemented into the package but no MC simulations have been run. Hence, the
code is already prepared to carry out some study about the changes of the KATRIN sen-
sitivity when taking into account this model. Probably some study about the correlations
between its parameters is necessary. Therefore, another algorithm rather than Levenberg-
Marquardt routine might be suitable to solve it. To implement this model into the code,
a description for the negative region of m2

ν has to be chosen. Note that λ must fulfill
λ ≥ 0. To obtain the proper Gaussian distribution when the input is λ = 0, a meaningless
physical description for the negative region λ < 0 has to be invented as well:

If λ ≥ 0:

d2N

dEdt
=





K
∑

i Wi · F (εi, y)peEetotεi

[
(ε2i + λ2 −m2

ν)
1
4 − λ

(ε2i +λ2−m2
ν)

1
4

]2

θ(εi −mν) m2
ν ≥ 0

K
∑

i Wi · F (εi, y)peEetotεi

[
(ε2i + λ2 + m2

ν)
1
4 − λ

(ε2i +λ2+m2
ν)

1
4

]2

θ(εi) m2
ν < 0

(4.14)

54 Simulations of the KATRIN experiment

If λ < 0:

d2N

dEdt
=





K
∑

i Wi · F (εi, y)peEetotεi

[
(ε2i + λ2 −m2

ν)
1
4 + λ

(ε2i +λ2−m2
ν)

1
4

]2

θ(εi −mν) m2
ν ≥ 0

K
∑

i Wi · F (εi, y)peEetotεi

[
(ε2i + λ2 + m2

ν)
1
4 + λ

(ε2i +λ2+m2
ν)

1
4

]2

θ(εi) m2
ν < 0

(4.15)

Chapter 5

Conclusion and Outlook

This work summarizes the influence of some Non SM theoretical approaches of the weak
interaction on the tritium beta decay spectrum and specifically on the KATRIN experi-
mental result. A first study was done by involving only SM physics, which led to values
near the already known KATRIN sensitivity and discovery potential on m2

ν . The val-
ues extracted from the MC simulation developed to reach such objectives among others,
presented a little dependence on the studied energy range of the spectrum.

A further step was implemented by analyzing the Non V-A case of Non SM physics.
A first study on how a Non V-A tritium beta decay spectrum influences on a SM analysis
was carried out. The worst cases, i.e., δ = +0.3 and δ = −0.3, showed a shift in the
neutrino mass measurement of about 20% and 12% respectively, both for an input of
mν = 0.33 eV near the KATRIN discovery potential (mν = 0.35 eV). The shift in the m2

ν

measurement mentioned above forced us to take into account Non V-A physics. When
analyzing this case, the χ2 global minimum necessary to fit the data turned out to be very
hidden. A special search about the best algorithm to deal with this technical problem was
accomplished. The Levenberg-Marquardt routine was claimed to be the proper tool, with
which approximate results could be obtained. It was demonstrated that extremely strong
correlations between some of the parameters of the fit underlay the problem of searching
the global minima. A comparison between the SM case and the Non V-A problem was
realized by using the same approximations and routines. Under these considerations, the
change on σm2

ν
was computed to yield σm2

ν
= 0.1101 eV2 in the SM, and σm2

ν
= 0.1113

eV2 in the Non V-A model. Therefore, the KATRIN sensitivity is not too affected when
considering the Non V-A description of the weak interaction. Concerning the KATRIN
discovery potential, it was found that the 0.35 eV limit of the SM might be increased
within the Non V-A frame. If so, better experimental limits on the Non V-A coupling
constants or the tritium beta decay endpoint could help to bring down again the discovery
potential.

Other extensions of the SM were tested. Primarily, the case when neutrinos are
tachyons after a T2b decay. Briefly, the same decay under the assumption of the vio-
lation of Lorentz invariance.

The tachyonic model yielded a surprising result, since the sensitivity of the KATRIN
experiment on κ (the neutrino tachyonic mass) is better than the sensitivity on the regular
neutrino mass mν . Regarding the potential systematic error which might occur if neutrinos
were really tachyons and the experimental data was fitted with SM physics, the χ2 value

56 Conclusion and Outlook

of the fits would allow to rule out the theoretical model used to fit the data. A mixture
of theoretical models formed by the SM and the tachyonic model was also tested. In this
sense, experimental data generated with SM was analyzed with tachyons for m2

ν < 0 eV2,
and with the SM for m2

ν ≥ 0 eV2. For this combination, the χ2 value served again to rule
out the physics models involved in the theoretical functions.

Finally, the violation of Lorentz invariance description of the T2b decay was understood
as to be implemented into the simulations. Although no MC results have been run, the
necessary environment has been developed to allow future researches in this area.

The simulation package written to obtain the results explained in this work can be
enlarged to treat other descriptions of the T2b decay. Among them, a very interesting
one concerns the so-called Kaluza-Klein towers [46] which deals with neutrinos in extra
dimensions.

More KATRIN experimental features which are independent of the descriptions of the
beta decay can also be introduced to quantify with higher accuracy the sensitivity on mν .
Among others, the most appropriate would be the fluctuations of the retarding potential,
the fluctuations of the column density as well as the recoil energy of the daughter molecule.

As mentioned before, a quantitative result for the Non V-A theory is still necessary.
Presently, this can be easily done by including again all the deactivated corrections in the
spectrum. Also, the interaction with the setup must be restored. This calculation should
be carried out by means of the Levenberg-Marquardt routine which strongly relies on the
precision of the derivatives of χ2 with respect to its inner variables (free parameters of the
fit). To reach a more enhanced performance in this calculation, it is highly recommended
to implement an interaction between this simulation package and a Multiple Precision
Arithmetic Library [45].

Finally, the violation of Lorentz invariance treatment of the tritium beta decay is
already available to be checked. Although, a preliminary study on the correlations between
parameters and another minimization routine could be necessary.

Appendix A

Parameters used in the

simulations

Parameter Symbol Value
Column density ρc 5 · 1017 molecules/cm2

Magnetic field at the source BS 3.6 T
Magnetic field at the APL BA 3 · 10−4 T
Magnetic field at the pinch Bmax 6 T

Radius of the fluxtube in WGTS RS 4.11 cm
Radius of the fluxtube at the APL RA 450 cm

Maximum accepted angle for outgoing electrons θMax 51◦

Efficiency of the detector εdet 0.9
T2 purity εT2 0.95

Fermi-Sirlin function coefficient a 1.018983
Fermi-Sirlin function coefficient b 0.0015582

Probability of 0-scattering inside the WGTS P0 0.413339
Probability of 1-scattering inside the WGTS P1 0.292658
Probability of 2-scattering inside the WGTS P2 0.167331
Probability of 3-scattering inside the WGTS P3 0.079129
Probability of 4-scattering inside the WGTS P4 0.031776

Energy loss function coefficient A1 0.204
Energy loss function coefficient A2 0.0556
Energy loss function coefficient ω1 1.85
Energy loss function coefficient ω2 12.5
Energy loss function coefficient ε1 12.6
Energy loss function coefficient ε2 14.3
Energy loss function coefficient εc 14.092115609

Background rate Γb 0.01 Hz
Tritium beta decay endpoint E0 18575 eV

58 Parameters used in the simulations

Appendix B

Simulation code

B.1 Simulation package with MINUIT algorithms

An implementation of the exact problem by using the MINUIT algorithms of minimization
is shown in the following code.

B.1.1 Tools.h

#include<cstdio>

#include<cstdlib>

#include<iostream>

#include<fstream>

#include<math.h>

#include<iomanip>

#include<time.h>

#include <gsl/gsl_rng.h>

#include <gsl/gsl_randist.h>

#include <gsl/gsl_math.h>

#include<gsl/gsl_vector.h>

#include<gsl/gsl_multimin.h>

#define sp(x) setprecision(x)

using namespace std;

/*An instance to this class generates the necessary environment to start

up the gaussian randomization. By calling the function "Randomize" a

random number is given back.*/

class Random{

public:

gsl_rng *r;

Random()

{

const gsl_rng_type * T;

gsl_rng_env_setup();

60 Simulation code

T = gsl_rng_default;

r = gsl_rng_alloc(T);

gsl_rng_set(r,time(NULL));

}

double Randomize(double sigma)

{

return gsl_ran_gaussian(r,sigma);

}

~Random()

{

gsl_rng_free (r);

}

};

/*An instance to this class solves the integral of a function with

variable in array1 and function value in array2. The number of elements

p of both arrays is necessary for the algorithm to work.

The result is stored in the variable "Integral".*/

class Integration{

public:

double Integral;

Integration(double array1[],double array2[],int p)

{

//This algorithm integrates by using Bode’s rule

double x[8],y[8];

double h;

int j;

Integral = 0.;

for(j=1;j<=5;j++)

{

x[j] = array1[j];

y[j] = array2[j];

}

y[6] = y[5];

x[6] = x[5];

x[2] = x[2] - x[1];

x[3] = x[3] - x[1];

x[4] = x[4] - x[1];

x[5] = x[5] - x[1];

x[1] = 0.;

h = x[2] - x[1];

Integral += (2./45.)*h*((7.*y[1]) + (32.*y[2]) + (12.*y[3]) +

(32.*y[4]) + (7.*y[5]));

while(j <= p)

{

B Simulation package with MINUIT algorithms 61

x[2] = array1[j+1];

y[2] = array2[j+1];

x[3] = array1[j+2];

y[3] = array2[j+2];

x[4] = array1[j+3];

y[4] = array2[j+3];

x[7] = array1[j+4];

y[7] = array2[j+4];

x[1] = 0.;

y[1] = y[6];

x[2] = x[2] - x[6];

x[3] = x[3] - x[6];

x[4] = x[4] - x[6];

x[5] = x[7] - x[6];

x[6] = x[7];

y[6] = y[7];

y[5] = y[7];

if (x[5] > x[4] && x[4] > x[3] && x[3] > x[2] && x[2] > x[1])

Integral += (2./45.)*h*((7.*y[1]) + (32.*y[2]) + (12.*y[3]) +

(32.*y[4]) + (7.*y[5]));

else

{

if ((x[2] > x[1]) && (x[3]< x[2]))

Integral += h*((y[1]+y[2])/2.);

if ((x[3] > x[2]) && (x[2] > x[1]) && (x[4] < x[3]))

Integral += h*(((y[1]+y[2])/2.)+ ((y[2]+y[3])/2.));

if ((x[4] > x[3]) && (x[3] > x[2]) && (x[2] > x[1]))

Integral += h*(((y[1]+y[2])/2.) + ((y[2]+y[3])/2.) +

((y[3]+y[4])/2.));

}

j +=4;

}

}

~Integration()

{

}

};

B.1.2 ResponseFunction.h

#include<cstdio>

#include<cstdlib>

#include<iostream>

#include<fstream>

#include<math.h>

62 Simulation code

#include<iomanip>

#define sp(x) setprecision(x)

#define In Integration

#define Il Integral

using namespace std;

/*An instance to this class generates the necessary empirical coefficients

for the calculation of the energy loss function and the response function

of the KATRIN setup*/

class EmpiricalCoeficients{

public:

double P0,P1,P2,P3,P4;

double A1,A2,w1,w2,e1,e2,ec;

EmpiricalCoeficients()

{

//Scattering probabilities:

P0 = 0.413339;

P1 = 0.292658;

P2 = 0.167331;

P3 = 0.079129;

P4 = 0.031776;

//Energy loss function coeficients:

A1 = 0.204;

A2 = 0.0556;

w1 = 1.85;

w2 = 12.5;

e1 = 12.6;

e2 = 14.3;

ec = 14.092115609;

}

~EmpiricalCoeficients()

{

}

};

/*An instance to this class generates the response function of the KATRIN

setup*/

class ResponseFunction{

public:

EmpiricalCoeficients coe;

TechnicalParameters tec;

double* E;

B Simulation package with MINUIT algorithms 63

double* E2;

double* E3;

double* E4;

double* R;

double* R2;

double* R2_1;

double* R2_2;

double* R3;

double* R3_1;

double* R4;

double* Int;

ResponseFunction()

{

double E_main;

double e,e2,e3,e4;

double I_Step = 250.;

int i,de,c,c2,c3,c4;

E = new double[300];

E2 = new double[300];

E3 = new double[300];

E4 = new double[300];

R = new double[300];

R2 = new double[300];

R2_1 = new double[300];

R2_2 = new double[300];

R3 = new double[300];

R3_1 = new double[300];

R4 = new double[300];

Int = new double[300];

e = 0.;

c = 0;

i = 0;

cout << "Calculating convolution integrals...\n";

while(e <= tec.E_High - tec.E_Low)

{

E[c] = e;

e2 = 0.;

c2 = 0;

while(e2 <= tec.E_High - tec.E_Low)

{

E2[c2] = e2;

64 Simulation code

R2[c2] = EL(e-e2)*EL(e2);

e3 = 0.;

c3 = 0;

while(e3 <= tec.E_High - tec.E_Low)

{

E3[c3] = e3;

R3[c3] = EL(e - e3 - e2)*EL(e3)*EL(e2);

e4 = 0.;

c4 = 0;

while(e4 <= tec.E_High - tec.E_Low)

{

E4[c4] = e4;

R4[c4] = EL(e-e4-e3-e2)*EL(e4)*EL(e3)*EL(e2);

e4 += (tec.E_High - tec.E_Low)/I_Step;

c4++;

i++;

}

In Cv4(E4,R4,c4 -1);

R3_1[c3] = Cv4.Il;

c3++;

e3 += (tec.E_High - tec.E_Low)/I_Step;

}

In Cv3_1(E3,R3_1,c3 -1);

In Cv3(E3,R3,c3 -1);

R2_2[c2] = Cv3_1.Il;

R2_1[c2] = Cv3.Il;

c2++;

e2 += (tec.E_High - tec.E_Low)/I_Step;

}

In Cv2_2(E2,R2_2,c2 -1);

In Cv2_1(E2,R2_1,c2 -1);

In Cv2(E2,R2,c2 -1);

R[c] = (coe.P1*EL(e)) + (coe.P2*Cv2.Il) + (coe.P3*Cv2_1.Il)

+ (coe.P4*Cv2_2.Il);

e += (tec.E_High - tec.E_Low)/I_Step;

c++;

cout << sp(5) << i*100./pow(I_Step + 1.,4.) << "% Done"

<< endl;

}

cout << "Convolutions calculation -----> Done\n";

c--;

e = 0.;

ofstream Response("ResponseFunction.dat");

for(E_main=tec.E_Low;E_main<=tec.E_High;E_main+=tec.Accuracy)

B Simulation package with MINUIT algorithms 65

{

if(E_main == tec.E_Low)

{

(Response) << endl << "0." << " " << "0.";

}

else

{

de = 0;

while(de <= c)

{

Int[de] = T(E_main-E[de],tec.E_Low)*R[de];

if(E[de] > E_main)

break;

de++;

}

In I(E,Int,de);

(Response) << endl << sp(5) << E_main - tec.E_Low

<< " " << sp(10)

<< ((coe.P0*T(E_main,tec.E_Low)) + I.Il);

}

cout << sp(10) << E_main << endl;

}

Response.close();

}

double T(double x, double y)

{

//Transmission function

double TFunction;

double Delta_E;

Delta_E = x*tec.B_A/tec.B_Max;

if(x - y < 0.)

TFunction = 0.;

if((x - y >= 0.) && (x - y <= Delta_E))

TFunction = (1. - sqrt(1. - ((x -y)*tec.B_S/(x*tec.B_A))))/

(1. - sqrt(1. - (Delta_E*tec.B_S/(x*tec.B_A))));

if(x - y > Delta_E)

TFunction = 1.;

return TFunction;

}

double EL(double x)

{

//EnergyLoss function

66 Simulation code

double Function;

if(x<=0.)

Function = 0.;

if(x>=0. && x < coe.ec)

Function = coe.A1*exp(-2.*pow(x - coe.e1,2.)/pow(coe.w1,2.));

if(x >= coe.ec)

Function = coe.A2*pow(coe.w2,2.)/(pow(coe.w2,2.)+

4.*pow(x - coe.e2,2.));

return Function;

}

~ResponseFunction()

{

delete Int;

Int = NULL;

delete R4;

R4 = NULL;

delete R3_1;

R3_1 = NULL;

delete R3;

R3 = NULL;

delete R2_2;

R2_2 = NULL;

delete R2_1;

R2_1 = NULL;

delete R2;

R2 = NULL;

delete R;

R = NULL;

delete E4;

E4 = NULL;

delete E3;

E3 = NULL;

delete E2;

E2 = NULL;

delete E;

E = NULL;

}

};

B.1.3 DifferentialSpectrum.h

#include<cstdio>

#include<cstdlib>

#include<iostream>

#include<fstream>

B Simulation package with MINUIT algorithms 67

#include<math.h>

#include<iomanip>

#define sp(x) setprecision(x)

using namespace std;

/*An instance to this class generates experimental features, the

accuracy with which the spectrum will be calculated as well as the

starting points for the minimization .*/

class TechnicalParameters{

public:

int Experiments;

double B_S;

double B_Max;

double B_A;

double rho;

double r_A;

double e_det;

double e_T2;

double E_Low;

double E_High;

double EMax;

double EMin;

double Accuracy;

double Gamma_b;

double m_nu2_Starting_Minuit;

double k2_Starting_Minuit;

double E_0_Starting_Minuit;

double R_s_Starting_Minuit;

double R_b_Starting_Minuit;

double NonVA_Starting_Minuit;

double Lambda_Starting_Minuit;

TechnicalParameters()

{

Experiments = 5000;

B_S = 3.6;

B_Max = 6.;

B_A = 3.e-4;

rho = 10.e17;

r_A = 450.;

e_det = 0.9;

e_T2 = 0.95;

68 Simulation code

E_Low = 18490.;

E_High = 18590.9;

EMax = 18585.;

EMin = 18525.;

Accuracy = 0.01;

Gamma_b = 0.01;

E_0_Starting_Minuit = 18577.;

m_nu2_Starting_Minuit = -5.;

k2_Starting_Minuit = 5.;

R_s_Starting_Minuit = 1.5;

R_b_Starting_Minuit = 1.5;

NonVA_Starting_Minuit = 0.;

Lambda_Starting_Minuit = 0.;

}

~TechnicalParameters()

{

}

};

/*An instance to this class creates the set of free parameters

independently of the theoretical approach.*/

class FreeParameters{

public:

double m_nu2;

double k2;

double E_0;

double R_s;

double R_b;

double NonVA;

double Lambda;

FreeParameters()

{

}

~FreeParameters()

{

}

};

/*An instance to this class creates the necessary fundamental constants

which will be necessary in the package*/

class PhysicalConstants{

public:

double e;

B Simulation package with MINUIT algorithms 69

double G_f;

double Cos_Cab;

double M;

double c;

double m_e;

double h_bar;

double Alpha;

double g_A;

int Z;

PhysicalConstants()

{ e = 1.60217653e-19;

G_f = e*89.620e-45;

Cos_Cab = 0.9750;

M = 2.348;

c = 299792458.;

m_e = 9.1093826e-31;

h_bar = 1.05457168e-34;

Alpha = 7.297352568e-3;

g_A = 1.2673;

Z = 2;

}

~PhysicalConstants()

{

}

};

/*This class generates the constant K for the spectrum.

Two constants K and KTachyons are differentiated*/

class K{

public:

double Constant;

PhysicalConstants a;

TechnicalParameters b;

K()

{

double Theta_Max;

Theta_Max = asin(sqrt((b.B_S)/(b.B_Max)));

Constant = b.rho*M_PI*pow(b.r_A,2.)*(b.B_A/(b.B_S))*

(b.e_det)*(b.e_T2)*((1.-(cos(Theta_Max)))/2.)*

pow(a.G_f,2.)*pow(a.m_e,5.)*pow(a.c,4.)*pow(a.Cos_Cab,2.)

*pow(a.M,2.)/(2.*pow(M_PI,3.)*pow(a.h_bar,7.));

}

void KTachyons(double TACHYONS)

70 Simulation code

{

double Theta_Max;

Theta_Max = asin(sqrt((b.B_S)/(b.B_Max)));

Constant = b.rho*M_PI*pow(b.r_A,2.)*(b.B_A/(b.B_S))*

(b.e_det)*(b.e_T2)*((1.-(cos(Theta_Max)))/2.)*

pow(a.G_f,2.)*pow(a.m_e,5.)*pow(a.c,4.)*(1. + (3.*pow(a.g_A,2.)))

/(4.*pow(M_PI,3.)*pow(a.h_bar,7.));

}

~K()

{

}

};

/*An instance to this class generates the differential spectrum for a set of

free parameters. All the studied theoretical approaches are here gathered.

The spectrum is stored in three arrays DS, DS2, DS3.*/

class DifferentialSpectrum{

public:

K k;

K kT;

double* E_energy;

double* P_energy;

double* DS;

double* DS2;

double* DS3;

double* PARTIAL;

int max,energylevels;

DifferentialSpectrum()

{

int y;

double EVolts,Energy;

PARTIAL = new double[11000];

DS = new double[11000];

DS2 = new double[11000];

DS3 = new double[11000];

E_energy = new double[300];

P_energy = new double[300];

kT.KTachyons(1.);

ifstream rEnergy("EnergyLevels.dat");

energylevels = 0;

while(!rEnergy.eof())

B Simulation package with MINUIT algorithms 71

{

(rEnergy) >> E_energy[energylevels] >> P_energy[energylevels];

energylevels++;

}

energylevels--;

rEnergy.close();

for(y=0;y<=(k.b.E_High - k.b.E_Low)/k.b.Accuracy;y++)

{

EVolts = k.b.E_Low + (y*k.b.Accuracy);

if(EVolts > k.b.E_High)

break;

else

{

DS[y] = EVolts;

DS2[y] = (EVolts*k.a.e)/((k.a.m_e)*pow(k.a.c,2.));

Energy = (EVolts*k.a.e);

PARTIAL[y] = KTerms(Energy);

}

}

y--;

max = y;

}

double KTerms(double E_e)

{

double E_T,p;

E_T = ((k.a.m_e*pow(k.a.c,2.))+(E_e));

p = sqrt(pow(E_T,2.)-(pow(k.a.m_e,2.)*pow(k.a.c,4.)))/k.a.c;

E_T = E_T/(k.a.m_e*pow(k.a.c,2.));

p = p/((k.a.m_e)*(k.a.c));

return p*E_T;

}

double Fermi(double E_e,double E_nu,double mnu,FreeParameters f)

{

//Fermi-Sirlin function from paper:

//"Direct Measurement of the Neutrino Mass, K~A¼ndig et al."

double Gamma,v_e,Beta,y;

Gamma = 1. + ((E_e)/((k.a.m_e)*pow(k.a.c,2.)));

v_e = sqrt(pow(k.a.c,2.)*(pow(Gamma,2.)-1.)/pow(Gamma,2.));

Beta = v_e/(k.a.c);

y = ((k.a.Z)*(k.a.Alpha))/Beta;

if(f.m_nu2 >= 0.)

{

72 Simulation code

if(E_nu - mnu <= 0.)

{

return 0.;

}

else

{

return 2.*M_PI*y*(pow((1. - exp(-2.*M_PI*y)),-1.))*

(1. + (2.*k.a.Alpha*pow(Beta,2.)/(3.*M_PI))*

log(2.*E_nu))*(1.018983 - (0.0015582/Beta));

}

}

if(f.m_nu2 < 0.)

{

if(E_nu <= 0.)

{

return 0.;

}

else

{

return 2.*M_PI*y*(pow((1. - exp(-2.*M_PI*y)),-1.))*

(1. + (2.*k.a.Alpha*pow(Beta,2.)/(3.*M_PI))*

log(2.*fabs(E_nu)))*(1.018983 - (0.0015582/Beta));

}

}

}

void EventsCalculator(double SM,FreeParameters f)

{

int m;

for(m=0;m<=max;m++)

{

DS3[m] = PARTIAL[m]*PTerms((DS[m]*k.a.e),E_energy,P_energy,

energylevels,f);

}

}

void EventsCalculator(FreeParameters f,int NON_VA)

{

int m;

for(m=0;m<=max;m++)

{

DS3[m] = PARTIAL[m]*PTerms((DS[m]*k.a.e),E_energy,P_energy,

energylevels,f,NON_VA);

}

}

B Simulation package with MINUIT algorithms 73

void EventsCalculator(FreeParameters f,double TACHYONS)

{

int m;

for(m=0;m<=max;m++)

{

DS3[m] = PARTIAL[m]*PTerms((DS[m]*k.a.e),E_energy,P_energy,

energylevels,f,TACHYONS);

}

}

void EventsCalculator(FreeParameters f,double TACHYONS,int ANTISIMETRY)

{

int m;

for(m=0;m<=max;m++)

{

DS3[m] = PARTIAL[m]*PTerms((DS[m]*k.a.e),E_energy,P_energy,

energylevels,f,TACHYONS,ANTISIMETRY);

}

}

void EventsCalculator(FreeParameters f,double VIOLATION,double LORENTZ)

{

int m;

for(m=0;m<=max;m++)

{

DS3[m] = PARTIAL[m]*PTerms((DS[m]*k.a.e),E_energy,P_energy,

energylevels,f,VIOLATION,LORENTZ);

}

}

double PTerms(double E_e,double E_i[],double P_i[],int levels,

FreeParameters f)

{

double PSum,ptot;

double Enu;

double mass;

double root;

PSum = 0.;

ptot = 0.;

for(int i=0;i<=levels;i++)

{

PSum += P_i[i];

Enu = (k.a.e*(f.E_0 - E_i[i])) - E_e;

74 Simulation code

mass = sqrt(fabs(f.m_nu2));

mass = mass*k.a.e/(k.a.m_e*pow(k.a.c,2.));

Enu = Enu/(k.a.m_e*pow(k.a.c,2.));

if(f.m_nu2 >= 0.)

{

if(Enu - mass <= 0.)

{

ptot += 0.;

}

else

{

root = sqrt(fabs(pow(Enu,2.) - pow(mass,2.)));

ptot += k.Constant*Fermi(E_e,Enu,mass,f)*

P_i[i]*Enu*root;

}

}

if(f.m_nu2 < 0.)

{

if(Enu <= 0.)

{

ptot += 0.;

}

else

{

root = sqrt(fabs(pow(Enu,2.) + pow(mass,2.)));

ptot += k.Constant*Fermi(E_e,Enu,mass,f)*

P_i[i]*Enu*root;

}

}

}

return ptot/PSum;

}

double PTerms(double E_e,double E_i[],double P_i[],int levels,

FreeParameters f,int NON_VA)

{

double PSum,ptot;

double Enu;

double correction,mass;

double root;

PSum = 0.;

ptot = 0.;

for(int i=0;i<=levels;i++)

B Simulation package with MINUIT algorithms 75

{

PSum += P_i[i];

Enu = (k.a.e*(f.E_0 - E_i[i])) - E_e;

mass = sqrt(fabs(f.m_nu2));

mass = mass*k.a.e/(k.a.m_e*pow(k.a.c,2.));

Enu = Enu/(k.a.m_e*pow(k.a.c,2.));

correction = 1. + (f.NonVA*mass/Enu);

if(f.m_nu2 >= 0.)

{

if(Enu - mass <= 0.)

{

ptot += 0.;

}

else

{

root = sqrt(fabs(pow(Enu,2.) - pow(mass,2.)));

ptot += k.Constant*Fermi(E_e,Enu,mass,f)*

P_i[i]*Enu*root*correction;

}

}

if(f.m_nu2 < 0.)

{

if(Enu <= 0.)

{

ptot += 0.;

}

else

{

root = sqrt(fabs(pow(Enu,2.) + pow(mass,2.)));

ptot += k.Constant*Fermi(E_e,Enu,mass,f)*

P_i[i]*Enu*root*correction;

}

}

}

return ptot/PSum;

}

double PTerms(double E_e,double E_i[],double P_i[],int levels,

FreeParameters f,double TACHYONS)

{

double PSum,ptot;

double Enu;

double mass;

76 Simulation code

double root;

PSum = 0.;

ptot = 0.;

for(int i=0;i<=levels;i++)

{

PSum += P_i[i];

Enu = (k.a.e*(f.E_0 - E_i[i])) - E_e;

mass = sqrt(fabs(f.k2));

mass = mass*k.a.e/(k.a.m_e*pow(k.a.c,2.));

Enu = Enu/(k.a.m_e*pow(k.a.c,2.));

if(f.k2 >= 0.)

{

if(Enu <= 0.)

{

ptot += 0.;

}

else

{

root = sqrt(fabs(pow(Enu,2.) + pow(mass,2.)));

ptot += kT.Constant*Fermi(E_e,Enu,mass,f)*

P_i[i]*(pow(Enu,2.) + (Enu*root) + pow(mass,2.));

}

}

if(f.k2 < 0.)

{

if(Enu - mass <= 0.)

{

ptot += 0.;

}

else

{

root = sqrt(fabs(pow(Enu,2.) - pow(mass,2.)));

ptot += kT.Constant*Fermi(E_e,Enu,mass,f)*

P_i[i]*(pow(Enu,2.) + (Enu*root) - pow(mass,2.));

}

}

}

return ptot/PSum;

}

double PTerms(double E_e,double E_i[],double P_i[],int levels,

FreeParameters f,double TACHYONS,int ANTISIMETRY)

B Simulation package with MINUIT algorithms 77

{

double PSum,ptot;

double Enu;

double mass;

double root;

PSum = 0.;

ptot = 0.;

for(int i=0;i<=levels;i++)

{

PSum += P_i[i];

Enu = (k.a.e*(f.E_0 - E_i[i])) - E_e;

mass = sqrt(fabs(f.k2));

mass = mass*k.a.e/(k.a.m_e*pow(k.a.c,2.));

Enu = Enu/(k.a.m_e*pow(k.a.c,2.));

if(f.k2 >= 0.)

{

if(Enu <= 0.)

{

ptot += 0.;

}

else

{

root = sqrt(fabs(pow(Enu,2.) + pow(mass,2.)));

ptot += kT.Constant*Fermi(E_e,Enu,mass,f)*P_i[i]*

(pow(Enu,2.) + (Enu*root) + pow(mass,2.));

}

}

if(f.k2 < 0.)

{

if(Enu - mass <= 0.)

{

ptot += 0.;

}

else

{

root = sqrt(fabs(pow(Enu,2.) - pow(mass,2.)));

ptot += k.Constant*Fermi(E_e,Enu,mass,f)*P_i[i]*Enu*root;

}

}

}

return ptot/PSum;

}

78 Simulation code

double PTerms(double E_e,double E_i[],double P_i[],int levels,

FreeParameters f,double VIOLATION,double LORENTZ)

{

double PSum,ptot;

double Enu;

double mass;

double FourthRoot;

PSum = 0.;

ptot = 0.;

for(int i=0;i<=levels;i++)

{

PSum += P_i[i];

Enu = (k.a.e*(f.E_0 - E_i[i])) - E_e;

mass = sqrt(fabs(f.m_nu2));

mass = mass*k.a.e/(k.a.m_e*pow(k.a.c,2.));

Enu = Enu/(k.a.m_e*pow(k.a.c,2.));

if(f.Lambda >= 0.)

{

if(f.m_nu2 >= 0.)

{

if(Enu - mass <= 0.)

{

ptot += 0.;

}

else

{

FourthRoot = pow(fabs(pow(Enu,2.) +

pow(f.Lambda,2.) - f.m_nu2),0.25);

ptot += k.Constant*Fermi(E_e,Enu,mass,f)*P_i[i]*

Enu*pow(FourthRoot - (f.Lambda/FourthRoot),2.);

}

}

if(f.m_nu2 < 0.)

{

if(Enu <= 0.)

{

ptot += 0.;

}

else

{

FourthRoot = pow(fabs(pow(Enu,2.) +

pow(f.Lambda,2.) + f.m_nu2),0.25);

B Simulation package with MINUIT algorithms 79

ptot += k.Constant*Fermi(E_e,Enu,mass,f)*P_i[i]*

Enu*pow(FourthRoot - (f.Lambda/FourthRoot),2.);

}

}

}

else

{

if(f.m_nu2 >= 0.)

{

if(Enu - mass <= 0.)

{

ptot += 0.;

}

else

{

FourthRoot = pow(fabs(pow(Enu,2.) +

pow(f.Lambda,2.) - f.m_nu2),0.25);

ptot += k.Constant*Fermi(E_e,Enu,mass,f)*P_i[i]*

Enu*pow(FourthRoot + (f.Lambda/FourthRoot),2.);

}

}

if(f.m_nu2 < 0.)

{

if(Enu <= 0.)

{

ptot += 0.;

}

else

{

FourthRoot = pow(fabs(pow(Enu,2.) +

pow(f.Lambda,2.) + f.m_nu2),0.25);

ptot += k.Constant*Fermi(E_e,Enu,mass,f)*P_i[i]

*Enu*pow(FourthRoot + (f.Lambda/FourthRoot),2.);

}

}

}

}

return ptot/PSum;

}

~DifferentialSpectrum()

{

delete PARTIAL;

PARTIAL = NULL;

80 Simulation code

delete P_energy;

P_energy = NULL;

delete E_energy;

E_energy = NULL;

delete DS3;

DS3 = NULL;

delete DS2;

DS2 = NULL;

delete DS;

DS = NULL;

}

};

B.1.4 IntegratedSpectrum.h

#include<cstdio>

#include<cstdlib>

#include<iostream>

#include<fstream>

#include<math.h>

#include<iomanip>

#define sp(x) setprecision(x)

using namespace std;

/*An instance to this class prepares some differential spectrum to be

integrated by using also the response function of the setup.

Afterwards, the functions "LoadDifSpectra" can be instantiated to

load a specific theoretial approach of the spectrum. Finally, the

function "Integrate" integrates the spectrum from the retarding

potential to the endpoint.*/

class IntegratedSpectrum{

public:

DifferentialSpectrum dif;

double Integrated;

double* RF1;

double* RF2;

double* A;

double* B;

int j;

IntegratedSpectrum()

{

B Simulation package with MINUIT algorithms 81

RF1 = new double[11000];

RF2 = new double[11000];

A = new double[11000];

B = new double[11000];

ifstream rRes("ResponseFunction.dat");

if(!rRes.is_open())

{

cout << "Error while opening file\n";

}

else

{

j = 0;

while(!rRes.eof())

{

(rRes) >> RF1[j] >> RF2[j];

j++;

}

rRes.close();

}

j--;

}

void LoadDifSpectra(double SM,FreeParameters free)

{

dif.EventsCalculator(1.,free);

}

void LoadDifSpectra(FreeParameters free,int NON_VA)

{

dif.EventsCalculator(free,NON_VA);

}

void LoadDifSpectra(FreeParameters free,double TACHYONS)

{

dif.EventsCalculator(free,TACHYONS);

}

void LoadDifSpectra(FreeParameters free,double TACHYONS,int ANTISIMETRY)

{

dif.EventsCalculator(free,TACHYONS,ANTISIMETRY);

}

void LoadDifSpectra(FreeParameters free,double VIOLATION,double LORENTZ)

{

dif.EventsCalculator(free,VIOLATION,LORENTZ);

}

82 Simulation code

void Integrate(double Wall)

{

int k,l,m;

k = 0;

l = 0;

m = 1;

for(;;)

{

if(dif.DS[k] >= Wall)

{

A[m] = dif.DS2[k];

B[m] = dif.DS3[k]*RF2[l];

l++;

m++;

}

if(k == j)

break;

k++;

}

Integration I(A,B,m-1);

Integrated = I.Integral;

}

~IntegratedSpectrum()

{

delete B;

B = NULL;

delete A;

A = NULL;

delete RF2;

RF2 = NULL;

delete RF1;

RF1 = NULL;

}

};

B.1.5 DataGenerator.h

#include<cstdio>

#include<cstdlib>

#include<iostream>

#include<fstream>

#include<time.h>

#include<vector>

B Simulation package with MINUIT algorithms 83

using namespace std;

/*An instance to this class creates experimental data. The data is spread

in a Gaussian way by means of the function "Calculator". The retarding

potential an measuring time with which the measurements are carried out

are stored in the arrays "thePotentials" and "theTimes", respectively.

The experimantal measurement is stored in "theMeasurements".*/

class DataGenerator{

private:

std::vector<double> thePotentials;

std::vector<double> theMeasurements;

std::vector<double> theTimes;

public:

double trash[2];

Random rnd;

TechnicalParameters T;

IntegratedSpectrum Int;

FreeParameters F;

std::vector<double> theIntegrals;

DataGenerator(double E_0,double m_nu2,double R_s,double R_b,double NONVA,

double LAMBDA,char *E_Range,int OPTION)

{

F.E_0 = E_0;

F.m_nu2 = m_nu2;

F.k2 = -m_nu2;

F.NonVA = NONVA;

F.Lambda = LAMBDA;

F.R_s = R_s;

F.R_b = R_b;

switch(OPTION)

{

case 0:

//SM

Int.LoadDifSpectra(1.,F);

break;

case 1:

//NON SM, NON V-A

Int.LoadDifSpectra(F,1);

break;

case 2:

//NON SM, TACHYONS, SIMETRIC AROUND 0eV

Int.LoadDifSpectra(F,1.);

84 Simulation code

break;

case 3:

//NON SM, TACHYONS, ANTISIMETRIC AROUND 0eV

Int.LoadDifSpectra(F,1.,1);

break;

case 4:

//NON SM, VIOLATION OF LORENTZ INVARIANCE

Int.LoadDifSpectra(F,1.,1.);

break;

}

ifstream rTime(E_Range);

while(!rTime.eof())

{

(rTime) >> trash[0] >> trash[1];

if(trash [1] != 0.)

{

thePotentials.push_back(trash[0]);

theTimes.push_back(trash[1]);

Int.Integrate(trash[0]);

theIntegrals.push_back(trash[1]*((R_s*Int.Integrated) +

(R_b*T.Gamma_b)));

}

}

rTime.close();

}

void Calculator()

{

theMeasurements.clear();

for(int i = 0;i < theIntegrals.size();i++)

{

theMeasurements.push_back(theIntegrals[i] +

rnd.Randomize(sqrt(theIntegrals[i])));

}

}

std::vector<double> potentials() const

{

return thePotentials;

}

std::vector<double> measurements() const

{

return theMeasurements;

}

std::vector<double> timedis() const

B Simulation package with MINUIT algorithms 85

{

return theTimes;

}

~DataGenerator()

{

}

};

B.1.6 Function.h

#include<cstdlib>

#include<cstdio>

#include<iostream>

#include<math.h>

#include<cassert>

#include "Minuit/FCNBase.h"

#include<vector>

#include<fstream>

#include<iomanip>

#define sp(x) setprecision(x)

using namespace std;

/*This class only plays a bit with the free parameters to prepare the

necessary environment of MINUIT*/

class myFunction{

public:

TechnicalParameters TFunction;

FreeParameters fFunction;

IntegratedSpectrum IFunction;

myFunction(double E_0,double m_nu2,double Rs,double Rb)

{

fFunction.E_0 = E_0;

fFunction.m_nu2 = m_nu2;

fFunction.R_s = Rs;

fFunction.R_b = Rb;

IFunction.LoadDifSpectra(1.,fFunction);

}

myFunction(double E_0,double m_nu2,double Rs,double Rb,double NONVA)

{

fFunction.E_0 = E_0;

fFunction.m_nu2 = m_nu2;

86 Simulation code

fFunction.R_s = Rs;

fFunction.R_b = Rb;

fFunction.NonVA = NONVA;

IFunction.LoadDifSpectra(fFunction,1);

}

myFunction(double E_0,double k2,double Rs,double Rb,int TACHYONS)

{

fFunction.E_0 = E_0;

fFunction.k2 = k2;

fFunction.R_s = Rs;

fFunction.R_b = Rb;

IFunction.LoadDifSpectra(fFunction,1.);

}

myFunction(double E_0,double k2,double Rs,double Rb,int TACHYONS,

int ANTISIMETRY)

{

fFunction.E_0 = E_0;

fFunction.k2 = k2;

fFunction.R_s = Rs;

fFunction.R_b = Rb;

IFunction.LoadDifSpectra(fFunction,1.,1);

}

myFunction(double E_0,double m_nu2,double Rs,double Rb,double LAMBDA,

int VIOLATION_LORENTZ)

{

fFunction.E_0 = E_0;

fFunction.m_nu2 = m_nu2;

fFunction.R_s = Rs;

fFunction.R_b = Rb;

fFunction.Lambda = LAMBDA;

IFunction.LoadDifSpectra(fFunction,1.,1.);

}

~myFunction()

{

}

double operator()(double Wall)

{

IFunction.Integrate(Wall);

return (fFunction.R_s*IFunction.Integrated)+

(fFunction.R_b*TFunction.Gamma_b);

}

B Simulation package with MINUIT algorithms 87

};

/*This class calculates Chi-Square as required by MINUIT. The same

implementation is repeated some times to allow the analysis of the

same experimental data be done by means of different theoretical approaches*/

class TheFunctionSM : public FCNBase

{

public:

TheFunctionSM(const std::vector<double>& meas,

const std::vector<double>& pot, const std::vector<double>& times):

theMeasurements(meas),thePotentials(pot),theTimes(times),theErrorDef(1.)

{

}

~TheFunctionSM()

{

}

virtual double up() const

{

return theErrorDef;

}

virtual double operator()(const std::vector<double>&) const;

std::vector<double> measurements() const

{

return theMeasurements;

}

std::vector<double> potentials() const

{

return thePotentials;

}

std::vector<double> timedis() const

{

return theTimes;

}

void setErrorDef(double def)

{

theErrorDef = def;

}

private:

std::vector<double> theMeasurements;

88 Simulation code

std::vector<double> thePotentials;

std::vector<double> theTimes;

double theErrorDef;

};

double TheFunctionSM::operator()(const std::vector<double>& par) const

{

double chi2;

assert(par.size() == 4);

myFunction f(par[0],par[1],par[2],par[3]);

chi2 = 0.;

for(unsigned int n = 0;n < theMeasurements.size();n++)

{

chi2 += pow(((theTimes[n]*f(thePotentials[n])) - theMeasurements[n])/

sqrt(theTimes[n]*f(thePotentials[n])),2.);

}

return chi2;

}

class TheFunctionNONVA : public FCNBase

{

public:

TheFunctionNONVA(const std::vector<double>& meas,

const std::vector<double>& pot, const std::vector<double>& times):

theMeasurements(meas),thePotentials(pot),theTimes(times),

theErrorDef(1.)

{

}

~TheFunctionNONVA()

{

}

virtual double up() const

{

return theErrorDef;

}

virtual double operator()(const std::vector<double>&) const;

std::vector<double> measurements() const

{

return theMeasurements;

}

B Simulation package with MINUIT algorithms 89

std::vector<double> potentials() const

{

return thePotentials;

}

std::vector<double> timedis() const

{

return theTimes;

}

void setErrorDef(double def)

{

theErrorDef = def;

}

private:

std::vector<double> theMeasurements;

std::vector<double> thePotentials;

std::vector<double> theTimes;

double theErrorDef;

};

double TheFunctionNONVA::operator()(const std::vector<double>&par) const

{

double chi2;

assert(par.size() == 5);

myFunction f(par[0],par[1],par[2],par[3],par[4]);

chi2 = 0.;

for(unsigned int n = 0;n < theMeasurements.size();n++)

{

chi2 += pow(((theTimes[n]*f(thePotentials[n])) - theMeasurements[n])/

sqrt(theTimes[n]*f(thePotentials[n])),2.);

}

return chi2;

}

class TheFunctionTACHYONS : public FCNBase

{

public:

TheFunctionTACHYONS(const std::vector<double>& meas,

const std::vector<double>& pot, const std::vector<double>& times):

theMeasurements(meas),thePotentials(pot),theTimes(times),theErrorDef(1.)

{

}

90 Simulation code

~TheFunctionTACHYONS()

{

}

virtual double up() const

{

return theErrorDef;

}

virtual double operator()(const std::vector<double>&) const;

std::vector<double> measurements() const

{

return theMeasurements;

}

std::vector<double> potentials() const

{

return thePotentials;

}

std::vector<double> timedis() const

{

return theTimes;

}

void setErrorDef(double def)

{

theErrorDef = def;

}

private:

std::vector<double> theMeasurements;

std::vector<double> thePotentials;

std::vector<double> theTimes;

double theErrorDef;

};

double TheFunctionTACHYONS::operator()(const std::vector<double>&par) const

{

double chi2;

assert(par.size() == 4);

myFunction f(par[0],par[1],par[2],par[3],1);

chi2 = 0.;

for(unsigned int n = 0;n < theMeasurements.size();n++)

{

chi2 += pow(((theTimes[n]*f(thePotentials[n])) - theMeasurements[n])/

B Simulation package with MINUIT algorithms 91

sqrt(theTimes[n]*f(thePotentials[n])),2.);

}

return chi2;

}

class TheFunctionTACHYONS_ANTISIMETRIC : public FCNBase

{

public:

TheFunctionTACHYONS_ANTISIMETRIC(const std::vector<double>& meas,

const std::vector<double>& pot, const std::vector<double>& times):

theMeasurements(meas),thePotentials(pot),theTimes(times),theErrorDef(1.)

{

}

~TheFunctionTACHYONS_ANTISIMETRIC()

{

}

virtual double up() const

{

return theErrorDef;

}

virtual double operator()(const std::vector<double>&) const;

std::vector<double> measurements() const

{

return theMeasurements;

}

std::vector<double> potentials() const

{

return thePotentials;

}

std::vector<double> timedis() const

{

return theTimes;

}

void setErrorDef(double def)

{

theErrorDef = def;

}

private:

std::vector<double> theMeasurements;

92 Simulation code

std::vector<double> thePotentials;

std::vector<double> theTimes;

double theErrorDef;

};

double TheFunctionTACHYONS_ANTISIMETRIC::

operator()(const std::vector<double>& par) const

{

double chi2;

assert(par.size() == 4);

myFunction f(par[0],par[1],par[2],par[3],1,1);

chi2 = 0.;

for(unsigned int n = 0;n < theMeasurements.size();n++)

{

chi2 += pow(((theTimes[n]*f(thePotentials[n])) - theMeasurements[n])/

sqrt(theTimes[n]*f(thePotentials[n])),2.);

}

return chi2;

}

class TheFunctionVIOLATION_LORENTZ : public FCNBase

{

public:

TheFunctionVIOLATION_LORENTZ(const std::vector<double>& meas,

const std::vector<double>& pot, const std::vector<double>& times):

theMeasurements(meas),thePotentials(pot),theTimes(times),theErrorDef(1.)

{

}

~TheFunctionVIOLATION_LORENTZ()

{

}

virtual double up() const

{

return theErrorDef;

}

virtual double operator()(const std::vector<double>&) const;

std::vector<double> measurements() const

{

return theMeasurements;

}

B Simulation package with MINUIT algorithms 93

std::vector<double> potentials() const

{

return thePotentials;

}

std::vector<double> timedis() const

{

return theTimes;

}

void setErrorDef(double def)

{

theErrorDef = def;

}

private:

std::vector<double> theMeasurements;

std::vector<double> thePotentials;

std::vector<double> theTimes;

double theErrorDef;

};

double TheFunctionVIOLATION_LORENTZ::operator()(const std::

vector<double>&par) const

{

double chi2;

assert(par.size() == 5);

myFunction f(par[0],par[1],par[2],par[3],par[4],1);

chi2 = 0.;

for(unsigned int n = 0;n < theMeasurements.size();n++)

{

chi2 += pow(((theTimes[n]*f(thePotentials[n])) - theMeasurements[n])/

sqrt(theTimes[n]*f(thePotentials[n])),2.);

}

return chi2;

}

B.1.7 Fitting.h

#include<cstdio>

#include<cstdlib>

#include<iostream>

#include<fstream>

#include<math.h>

#include<iomanip>

#include<strings.h>

94 Simulation code

#include "Minuit/FunctionMinimum.h"

#include "Minuit/MnUserParameterState.h"

#include "Minuit/MnPrint.h"

#include "Minuit/MnMigrad.h"

#include "Minuit/MnMinimize.h"

#include "Minuit/MnMinos.h"

#include "Minuit/MnContours.h"

#include "Minuit/MnPlot.h"

#include "Minuit/MnStrategy.h"

#include "Minuit/FumiliMinimizer.h"

#include "Minuit/MnMachinePrecision.h"

#include "Minuit/CombinedMinimizer.h"

#define sp(x) setprecision(x)

using namespace std;

/*By means of this class the Monte Carlo simulation is carried out.

The same experiment is repeated many times (see TFitting.Experiments)

and the result is recorded in the "wChi" file. The fitted data is obtained

by finding the global minimum of the Chi-Square function. The global

minimum search is done by the MINUIT package, which needs to interact with

another programs in a very strict way. Many of the lines of this file are

just needed by MINUIT. The class allows to fit with any theoretical

approach, although some combinations of experimental data and theoretical

description could lead to unpleasant behaviours.*/

class Fitting{

public:

TechnicalParameters TFitting;

MnUserParameters upar;

Fitting(double E_0,double m_nu2,double R_s,double R_b,double NONVA,

double LAMBDA,char *E_Range,int OPTION_1,int OPTION_2)

{

DataGenerator gdg(E_0,m_nu2,R_s,R_b,NONVA,LAMBDA,E_Range,OPTION_1);

char sChi[128] = "ChiMin";

strcat(sChi,E_Range);

ofstream wChi(sChi);

std::vector<double> pos = gdg.potentials();

std::vector<double> var = gdg.timedis();

MnStrategy st(2);

B Simulation package with MINUIT algorithms 95

if(OPTION_2 == 0)

{

upar.add("E_0",TFitting.E_0_Starting_Minuit,1.e-10);

upar.add("m_nu2",TFitting.m_nu2_Starting_Minuit,1.e-10);

upar.add("Rs",TFitting.R_s_Starting_Minuit,1.e-10);

upar.add("Rb",TFitting.R_b_Starting_Minuit,1.e-10);

upar.setLowerLimit("E_0",18570.);

for(int j=1;j<=TFitting.Experiments;j++)

{

gdg.Calculator();

std::vector<double> meas = gdg.measurements();

TheFunctionSM theFCN(meas,pos,var);

MnMinimize minimize(theFCN,upar,st);

FunctionMinimum min1 = minimize();

minimize.fix("E_0");

FunctionMinimum min4 = minimize();

minimize.release("E_0");

FunctionMinimum min5 = minimize();

minimize.fix("E_0");

FunctionMinimum min6 = minimize();

minimize.release("E_0");

minimize.fix("m_nu2");

FunctionMinimum min15 = minimize();

minimize.release("m_nu2");

FunctionMinimum min16 = minimize();

minimize.fix("m_nu2");

FunctionMinimum min17 = minimize();

minimize.release("m_nu2");

FunctionMinimum min22 = minimize();

minimize.fix("E_0");

FunctionMinimum min23 = minimize();

minimize.release("E_0");

FunctionMinimum min24 = minimize();

minimize.fix("E_0");

FunctionMinimum min25 = minimize();

minimize.release("E_0");

FunctionMinimum min = minimize();

if(min.isValid())

{

(wChi) << endl << sp(10) << min.fval() << " "

<< sp(10) << min.userState().value("E_0") << " "

96 Simulation code

<< sp(10) << min.userState().value("m_nu2") << " "

<< sp(10) << sqrt(fabs(min.userState().value("m_nu2")))

<< " " << sp(10) << min.userState().value("Rs")

<< " " << sp(10) << min.userState().value("Rb");

}

}

}

if(OPTION_2 == 1)

{

upar.add("E_0",TFitting.E_0_Starting_Minuit,1.e-10);

upar.add("m_nu2",TFitting.m_nu2_Starting_Minuit,1.e-10);

upar.add("Rs",TFitting.R_s_Starting_Minuit,1.e-10);

upar.add("Rb",TFitting.R_b_Starting_Minuit,1.e-10);

upar.add("NONVA",TFitting.NonVA_Starting_Minuit,1.e-10);

upar.setLowerLimit("E_0",18570.);

for(int j=1;j<=TFitting.Experiments;j++)

{

gdg.Calculator();

std::vector<double> meas = gdg.measurements();

TheFunctionNONVA theFCN(meas,pos,var);

MnMinimize minimize(theFCN,upar,st);

minimize.fix("NONVA");

FunctionMinimum min1 = minimize();

minimize.release("NONVA");

minimize.fix("E_0");

FunctionMinimum min2 = minimize();

minimize.release("E_0");

minimize.fix("NONVA");

FunctionMinimum min3 = minimize();

minimize.fix("E_0");

minimize.release("NONVA");

FunctionMinimum min4 = minimize();

minimize.release("E_0");

minimize.fix("NONVA");

minimize.fix("m_nu2");

FunctionMinimum min5 = minimize();

minimize.release("m_nu2");

FunctionMinimum min6 = minimize();

minimize.fix("m_nu2");

FunctionMinimum min7 = minimize();

minimize.release("m_nu2");

FunctionMinimum min8 = minimize();

minimize.fix("E_0");

B Simulation package with MINUIT algorithms 97

minimize.release("NONVA");

FunctionMinimum min9 = minimize();

minimize.release("E_0");

minimize.fix("NONVA");

FunctionMinimum min10 = minimize();

minimize.fix("E_0");

minimize.release("NONVA");

FunctionMinimum min11 = minimize();

minimize.release("E_0");

minimize.fix("NONVA");

FunctionMinimum min12 = minimize();

minimize.release("NONVA");

minimize.fix("E_0");

FunctionMinimum min13 = minimize();

minimize.release("E_0");

minimize.fix("NONVA");

FunctionMinimum min14 = minimize();

minimize.fix("E_0");

minimize.release("NONVA");

FunctionMinimum min15 = minimize();

minimize.release("E_0");

minimize.fix("NONVA");

minimize.fix("m_nu2");

FunctionMinimum min16 = minimize();

minimize.release("m_nu2");

FunctionMinimum min17 = minimize();

minimize.fix("m_nu2");

FunctionMinimum min18 = minimize();

minimize.release("m_nu2");

FunctionMinimum min19 = minimize();

minimize.fix("E_0");

minimize.release("NONVA");

FunctionMinimum min20 = minimize();

minimize.release("E_0");

minimize.fix("NONVA");

FunctionMinimum min21 = minimize();

minimize.fix("E_0");

minimize.release("NONVA");

FunctionMinimum min22 = minimize();

minimize.release("E_0");

minimize.fix("NONVA");

FunctionMinimum min23 = minimize();

minimize.release("NONVA");

minimize.fix("E_0");

FunctionMinimum min24 = minimize();

98 Simulation code

minimize.release("E_0");

minimize.fix("NONVA");

FunctionMinimum min25 = minimize();

minimize.fix("E_0");

minimize.release("NONVA");

FunctionMinimum min26 = minimize();

minimize.release("E_0");

minimize.fix("NONVA");

minimize.fix("m_nu2");

FunctionMinimum min27 = minimize();

minimize.release("m_nu2");

FunctionMinimum min28 = minimize();

minimize.fix("m_nu2");

FunctionMinimum min29 = minimize();

minimize.release("m_nu2");

FunctionMinimum min30 = minimize();

minimize.fix("E_0");

minimize.release("NONVA");

FunctionMinimum min31 = minimize();

minimize.release("E_0");

minimize.fix("NONVA");

FunctionMinimum min32 = minimize();

minimize.fix("E_0");

minimize.release("NONVA");

FunctionMinimum min33 = minimize();

minimize.release("E_0");

minimize.fix("NONVA");

FunctionMinimum min34 = minimize();

minimize.release("NONVA");

minimize.fix("E_0");

FunctionMinimum min35 = minimize();

minimize.release("E_0");

minimize.fix("NONVA");

FunctionMinimum min36 = minimize();

minimize.fix("E_0");

minimize.release("NONVA");

FunctionMinimum min37 = minimize();

minimize.release("E_0");

minimize.fix("NONVA");

minimize.fix("m_nu2");

FunctionMinimum min38 = minimize();

minimize.release("m_nu2");

FunctionMinimum min39 = minimize();

minimize.fix("m_nu2");

FunctionMinimum min40 = minimize();

minimize.release("m_nu2");

B Simulation package with MINUIT algorithms 99

FunctionMinimum min41 = minimize();

minimize.fix("E_0");

minimize.release("NONVA");

FunctionMinimum min42 = minimize();

minimize.release("E_0");

minimize.fix("NONVA");

FunctionMinimum min43 = minimize();

minimize.fix("E_0");

minimize.release("NONVA");

FunctionMinimum min44 = minimize();

minimize.release("E_0");

FunctionMinimum min = minimize();

if(min.isValid())

{

(wChi) << endl << sp(10) << min.fval() << " "

<< sp(10) << min.userState().value("E_0") << " "

<< sp(10) << min.userState().value("m_nu2") << " "

<< sp(10) << sqrt(fabs(min.userState().value("m_nu2")))

<< " " << sp(10) << min.userState().value("Rs")

<< " " << sp(10) << min.userState().value("Rb")

<< " " << sp(10) << min.userState().value("NONVA");

}

}

}

if(OPTION_2 == 2)

{

upar.add("E_0",TFitting.E_0_Starting_Minuit,1.e-10);

upar.add("k2",TFitting.k2_Starting_Minuit,1.e-10);

upar.add("Rs",TFitting.R_s_Starting_Minuit,1.e-10);

upar.add("Rb",TFitting.R_b_Starting_Minuit,1.e-10);

upar.setLowerLimit("E_0",18570.);

for(int j=1;j<=TFitting.Experiments;j++)

{

gdg.Calculator();

std::vector<double> meas = gdg.measurements();

TheFunctionTACHYONS theFCN(meas,pos,var);

MnMinimize minimize(theFCN,upar,st);

FunctionMinimum min1 = minimize();

minimize.fix("E_0");

FunctionMinimum min4 = minimize();

minimize.release("E_0");

100 Simulation code

FunctionMinimum min5 = minimize();

minimize.fix("E_0");

FunctionMinimum min6 = minimize();

minimize.release("E_0");

minimize.fix("k2");

FunctionMinimum min15 = minimize();

minimize.release("k2");

FunctionMinimum min16 = minimize();

minimize.fix("k2");

FunctionMinimum min17 = minimize();

minimize.release("k2");

FunctionMinimum min22 = minimize();

minimize.fix("E_0");

FunctionMinimum min23 = minimize();

minimize.release("E_0");

FunctionMinimum min24 = minimize();

minimize.fix("E_0");

FunctionMinimum min25 = minimize();

minimize.release("E_0");

FunctionMinimum min = minimize();

if(min.isValid())

{

(wChi) << endl << sp(10) << min.fval() << " "

<< sp(10) << min.userState().value("E_0") << " "

<< sp(10) << min.userState().value("k2") << " "

<< sp(10) << sqrt(fabs(min.userState().value("k2")))

<< " " << sp(10) << min.userState().value("Rs")

<< " " << sp(10) << min.userState().value("Rb");

}

}

}

if(OPTION_2 == 3)

{

upar.add("E_0",TFitting.E_0_Starting_Minuit,1.e-10);

upar.add("k2",TFitting.k2_Starting_Minuit,1.e-10);

upar.add("Rs",TFitting.R_s_Starting_Minuit,1.e-10);

upar.add("Rb",TFitting.R_b_Starting_Minuit,1.e-10);

upar.setLowerLimit("E_0",18570.);

for(int j=1;j<=TFitting.Experiments;j++)

{

gdg.Calculator();

std::vector<double> meas = gdg.measurements();

B Simulation package with MINUIT algorithms 101

TheFunctionTACHYONS_ANTISIMETRIC theFCN(meas,pos,var);

MnMinimize minimize(theFCN,upar,st);

FunctionMinimum min1 = minimize();

minimize.fix("E_0");

FunctionMinimum min4 = minimize();

minimize.release("E_0");

FunctionMinimum min5 = minimize();

minimize.fix("E_0");

FunctionMinimum min6 = minimize();

minimize.release("E_0");

minimize.fix("k2");

FunctionMinimum min15 = minimize();

minimize.release("k2");

FunctionMinimum min16 = minimize();

minimize.fix("k2");

FunctionMinimum min17 = minimize();

minimize.release("k2");

FunctionMinimum min22 = minimize();

minimize.fix("E_0");

FunctionMinimum min23 = minimize();

minimize.release("E_0");

FunctionMinimum min24 = minimize();

minimize.fix("E_0");

FunctionMinimum min25 = minimize();

minimize.release("E_0");

FunctionMinimum min = minimize();

if(min.isValid())

{

(wChi) << endl << sp(10) << min.fval() << " "

<< sp(10) << min.userState().value("E_0") << " "

<< sp(10) << min.userState().value("k2") << " "

<< sp(10) << sqrt(fabs(min.userState().value("k2")))

<< " " << sp(10) << min.userState().value("Rs")

<< " " << sp(10) << min.userState().value("Rb");

}

}

}

if(OPTION_2 == 4)

{

upar.add("E_0",TFitting.E_0_Starting_Minuit,1.e-10);

upar.add("m_nu2",TFitting.m_nu2_Starting_Minuit,1.e-10);

upar.add("Rs",TFitting.R_s_Starting_Minuit,1.e-10);

upar.add("Rb",TFitting.R_b_Starting_Minuit,1.e-10);

upar.add("LAMBDA",TFitting.Lambda_Starting_Minuit,1.e-10);

102 Simulation code

upar.setLowerLimit("E_0",18570.);

for(int j=1;j<=TFitting.Experiments;j++)

{

gdg.Calculator();

std::vector<double> meas = gdg.measurements();

TheFunctionVIOLATION_LORENTZ theFCN(meas,pos,var);

MnMinimize minimize(theFCN,upar,st);

minimize.fix("LAMBDA");

FunctionMinimum min1 = minimize();

minimize.release("LAMBDA");

minimize.fix("E_0");

FunctionMinimum min4 = minimize();

minimize.release("E_0");

minimize.fix("LAMBDA");

FunctionMinimum min5 = minimize();

minimize.fix("E_0");

minimize.release("LAMBDA");

FunctionMinimum min6 = minimize();

minimize.release("E_0");

minimize.fix("LAMBDA");

minimize.fix("m_nu2");

FunctionMinimum min15 = minimize();

minimize.release("m_nu2");

FunctionMinimum min16 = minimize();

minimize.fix("m_nu2");

FunctionMinimum min17 = minimize();

minimize.release("m_nu2");

FunctionMinimum min22 = minimize();

minimize.fix("E_0");

minimize.release("LAMBDA");

FunctionMinimum min23 = minimize();

minimize.release("E_0");

minimize.fix("LAMBDA");

FunctionMinimum min24 = minimize();

minimize.fix("E_0");

minimize.release("LAMBDA");

FunctionMinimum min25 = minimize();

minimize.release("E_0");

FunctionMinimum min = minimize();

if(min.isValid())

{

(wChi) << endl << sp(10) << min.fval() << " "

B Simulation package with MINUIT algorithms 103

<< sp(10) << min.userState().value("E_0") << " "

<< sp(10) << min.userState().value("m_nu2") << " "

<< sp(10) << sqrt(fabs(min.userState().value("m_nu2")))

<< " " << sp(10) << min.userState().value("Rs") << " "

<< sp(10) << min.userState().value("Rb")

<< " " << sp(10) << min.userState().value("LAMBDA");

}

}

}

wChi.close();

}

~Fitting()

{

}

};

/*The following class simply creates the necessary environment to allow the

above analysis in different energy ranges of the spectrum. From 20 eV to

50 eV.*/

class FitAllEnergyRanges{

public:

FitAllEnergyRanges(double E_0,double m_nu2,double R_s,double R_b,

double NONVA,double LAMBDA,int OPTION_1,int OPTION_2)

{

if(OPTION_1 <= 4 && OPTION_2 <= 4)

{

Fitting fit1(E_0,m_nu2,R_s,R_b,NONVA,LAMBDA,"Time20eV.dat",

OPTION_1,OPTION_2);

Fitting fit2(E_0,m_nu2,R_s,R_b,NONVA,LAMBDA,"Time25eV.dat",

OPTION_1,OPTION_2);

Fitting fit3(E_0,m_nu2,R_s,R_b,NONVA,LAMBDA,"Time30eV.dat",

OPTION_1,OPTION_2);

Fitting fit4(E_0,m_nu2,R_s,R_b,NONVA,LAMBDA,"Time40eV.dat",

OPTION_1,OPTION_2);

Fitting fit5(E_0,m_nu2,R_s,R_b,NONVA,LAMBDA,"Time50eV.dat",

OPTION_1,OPTION_2);

}

else

{

cout << endl << "Error from -FitAllEnergyRanges class-

\nEither OPTION_1 or OPTION_2 are not allowed!\n\n";

}

}

104 Simulation code

~FitAllEnergyRanges()

{

}

};

B.1.8 Spectrum.cpp

#include<cstdio>

#include<cstdlib>

#include<iostream>

#include<fstream>

#include<math.h>

#include<iomanip>

#include<DifferentialSpectrum.h>

#include<Tools.h>

#include<ResponseFunction.h>

#include<IntegratedSpectrum.h>

#include<DataGenerator.h>

#include<Function.h>

#include<Fitting.h>

using namespace std;

/*Everything can be handled from here. By changing the numbers

in "FitAllEnergyRanges" different analysis are ordered.*/

int main()

{

//ResponseFunction r;

FitAllEnergyRanges fit(18575.,2.,1.,1.,0.,0.,1,1);

return 0;

}

B.2 Simulation of the Non V-A approximate description

In the following, it is shown the code for the implementation of the Non V-A with approx-
imations. The Levenberg-Marquardt algorithm as written in the GSL library is used.

B.2.1 Levenberg.cpp

#include<cstdio>

#include<cstdlib>

#include<iostream>

#include<fstream>

#include<math.h>

B Simulation of the Non V-A approximate description 105

#include<cassert>

#include<vector>

#include<iomanip>

#include<gsl/gsl_rng.h>

#include<gsl/gsl_randist.h>

#include<gsl/gsl_vector.h>

#include<gsl/gsl_math.h>

#include<gsl/gsl_deriv.h>

#include<gsl/gsl_blas.h>

#include<gsl/gsl_multifit_nlin.h>

#define sp(x) setprecision(x)

using namespace std;

double IntegrateGSL(double Wall,double E_0,double m_nu2,double NonSM)

{

//Calculation of the analytical integral

static double B_S = 3.6;

static double B_Max = 6.;

static double B_A = 3.e-4;

static double rho = 10.e17;

static double r_A = 450.;

static double e_det = 0.9;

static double e_T2 = 0.95;

static double e = 1.60217653e-19;

static double G_f = 89.620e-45;

static double Cos_Cab = 0.9750;

static double M = 2.348;

static double c = 299792458.;

static double m_e = 0.501e6;

static double h_bar = 6.58211913765e-16;

static int Z = 2;

double static Constant;

double static Theta_Max;

double emax;

double emin;

double nmass;

double result;

double E_T,momentum;

double root;

nmass = sqrt(fabs(m_nu2));

Theta_Max = asin(sqrt((B_S)/(B_Max)));

Constant = rho*M_PI*pow(r_A,2.)*(B_A/(B_S))*

(e_det)*(e_T2)*((1.-(cos(Theta_Max)))/2.)*

106 Simulation code

pow(G_f,2.)*pow(Cos_Cab,2.)

*pow(M,2.)/(2.*pow(M_PI,3.)*pow(c,6.)*pow(h_bar,7.));

E_T = m_e + 18560.;

momentum = sqrt(pow(E_T,2.)- pow(m_e,2.));

emax = E_0 - Wall;

if(m_nu2 > 0.)

{

emin = sqrt(m_nu2);

if(E_0 - nmass <= Wall)

{

result = 0.;

}

else

{

root = sqrt(pow(emax,2.) - m_nu2);

result = Constant*E_T*momentum*((pow(root,3.)/3.) +

(NonSM*nmass*((emax*root) - (m_nu2*log(emax + root)) +

(m_nu2*log(nmass)))/2.));

}

}

if(m_nu2 < 0.)

{

emin = sqrt(fabs(m_nu2));

if(E_0 <= Wall)

{

result = 0.;

}

else

{

root = sqrt(pow(emax,2.) - m_nu2);

result = Constant*E_T*momentum*(((pow(root,3.) -

pow(-m_nu2,3./2.))/3.) + (NonSM*nmass*((emax*root) -

(m_nu2*log(emax + root)) + (m_nu2*log(nmass)))/2.));

if(result < 0.)

result = 0.;

}

}

if(m_nu2 == 0.)

{

emin = sqrt(m_nu2);

if(E_0 - nmass <= Wall)

{

result = 0.;

B Simulation of the Non V-A approximate description 107

}

else

{

result = Constant*E_T*momentum*(((pow(pow(emax,2.),3./2.)/3.)));

}

}

return result;

}

class Random{

//Randomization

public:

gsl_rng *r;

Random()

{

const gsl_rng_type * T;

gsl_rng_env_setup();

T = gsl_rng_default;

r = gsl_rng_alloc(T);

gsl_rng_set(r,time(NULL));

}

double Randomize(double sigma)

{

return gsl_ran_gaussian(r,sigma);

}

~Random()

{

gsl_rng_free (r);

}

};

class DataGenerator{

//Creation of the simulated experimental data

public:

std::vector<double> thePotentials;

std::vector<double> theMeasurements;

std::vector<double> theTimes;

Random rnd;

DataGenerator()

{

}

void Calculator(double E0,double mnu2,double Rs,double Rb,double bprimed)

108 Simulation code

{

double trash[2];

double I,I2;

static double Gamma_b = 0.01;

thePotentials.clear();

theMeasurements.clear();

theTimes.clear();

ifstream rTime("Time20eV.dat");

while(!rTime.eof())

{

(rTime) >> trash[0] >> trash[1];

if(trash [1] != 0.)

{

thePotentials.push_back(trash[0]);

I2 = (trash[1]*((Rs*IntegrateGSL(trash[0],E0,mnu2,bprimed))

+ (Rb*Gamma_b)));

I = I2 + rnd.Randomize(sqrt(I2));

theMeasurements.push_back(I);

theTimes.push_back(trash[1]);

}

}

rTime.close();

}

~DataGenerator()

{

}

};

struct data{

//Structure needed by the GSL library

size_t NumberMeas;

double *Wall;

double *Times;

double *ExpData;

};

int expb_f(const gsl_vector *x,void *params,gsl_vector *f)

{

//Setting the retarding potentials, times, measurements.

double E_0 = gsl_vector_get(x,0);

double m_nu2 = gsl_vector_get(x,1);

double Rs = gsl_vector_get(x,2);

double Rb = gsl_vector_get(x,3);

double bprime = gsl_vector_get(x,4);

static double Gamma_b = 0.01;

B Simulation of the Non V-A approximate description 109

double I_theo;

size_t i;

size_t NumberMeas = ((struct data*)params)->NumberMeas;

double *Wall = ((struct data*)params)->Wall;

double *Times = ((struct data*)params)->Times;

double *ExpData = ((struct data*)params)->ExpData;

for(i=0;i < NumberMeas;i++)

{

I_theo = Times[i]*((Rs*IntegrateGSL(Wall[i],E_0,m_nu2,bprime))

+ (Rb*Gamma_b));

gsl_vector_set(f,i,(ExpData[i] - I_theo)/sqrt(I_theo));

}

return GSL_SUCCESS;

}

double my_f0(double x,void *params)

{

//Function necessary to calculate the Jacobian of Chi-Square

double *points = (double*)params;

double E_0 = x;

double m_nu2 = points[1];

double Rs = points[2];

double Rb = points[3];

double bprime = points[4];

double Wall = points[5];

double Times = points[6];

double ExpData = points[7];

static double Gamma_b = 0.01;

double I_theo;

I_theo = Times*((Rs*IntegrateGSL(Wall,E_0,m_nu2,bprime)) + (Rb*Gamma_b));

return (ExpData - I_theo)/sqrt(I_theo);

}

double my_f1(double x,void *params)

{

//Function necessary to calculate the Jacobian of Chi-Square

double *points = (double*)params;

double E_0 = points[0];

double m_nu2 = x;

double Rs = points[2];

double Rb = points[3];

double bprime = points[4];

110 Simulation code

double Wall = points[5];

double Times = points[6];

double ExpData = points[7];

static double Gamma_b = 0.01;

double I_theo;

I_theo = Times*((Rs*IntegrateGSL(Wall,E_0,m_nu2,bprime)) + (Rb*Gamma_b));

return (ExpData - I_theo)/sqrt(I_theo);

}

double my_f2(double x,void *params)

{

//Function necessary to calculate the Jacobian of Chi-Square

double *points = (double*)params;

double E_0 = points[0];

double m_nu2 = points[1];

double Rs = x;

double Rb = points[3];

double bprime = points[4];

double Wall = points[5];

double Times = points[6];

double ExpData = points[7];

static double Gamma_b = 0.01;

double I_theo;

I_theo = Times*((Rs*IntegrateGSL(Wall,E_0,m_nu2,bprime)) + (Rb*Gamma_b));

return (ExpData - I_theo)/sqrt(I_theo);

}

double my_f3(double x,void *params)

{

//Function necessary to calculate the Jacobian of Chi-Square

double *points = (double*)params;

double E_0 = points[0];

double m_nu2 = points[1];

double Rs = points[2];

double Rb = x;

double bprime = points[4];

double Wall = points[5];

double Times = points[6];

double ExpData = points[7];

static double Gamma_b = 0.01;

double I_theo;

B Simulation of the Non V-A approximate description 111

I_theo = Times*((Rs*IntegrateGSL(Wall,E_0,m_nu2,bprime)) + (Rb*Gamma_b));

return (ExpData - I_theo)/sqrt(I_theo);

}

double my_f4(double x,void *params)

{

//Function necessary to calculate the Jacobian of Chi-Square

double *points = (double*)params;

double E_0 = points[0];

double m_nu2 = points[1];

double Rs = points[2];

double Rb = points[3];

double bprime = x;

double Wall = points[5];

double Times = points[6];

double ExpData = points[7];

static double Gamma_b = 0.01;

double I_theo;

I_theo = Times*((Rs*IntegrateGSL(Wall,E_0,m_nu2,bprime)) + (Rb*Gamma_b));

return (ExpData - I_theo)/sqrt(I_theo);

}

int expb_df(const gsl_vector *x,void *params,gsl_matrix *J)

{

//Calculation of the Jacobian of the Chi-Square function

size_t i;

size_t NumberMeas = ((struct data*)params)->NumberMeas;

double *Wall = ((struct data*)params)->Wall;

double *Times = ((struct data*)params)->Times;

double *ExpData = ((struct data*)params)->ExpData;

double result_0,err_0;

double result_1,err_1;

double result_2,err_2;

double result_3,err_3;

double result_4,err_4;

double p[8];

gsl_function F0,F1,F2,F3,F4;

p[0] = gsl_vector_get(x,0);

p[1] = gsl_vector_get(x,1);

p[2] = gsl_vector_get(x,2);

p[3] = gsl_vector_get(x,3);

p[4] = gsl_vector_get(x,4);

112 Simulation code

for(i=0;i < NumberMeas;i++)

{

p[5] = Wall[i];

p[6] = Times[i];

p[7] = ExpData[i];

F0.function = &my_f0;

F0.params = p;

F1.function = &my_f1;

F1.params = p;

F2.function = &my_f2;

F2.params = p;

F3.function = &my_f3;

F3.params = p;

F4.function = &my_f4;

F4.params = p;

gsl_deriv_central(&F0,gsl_vector_get(x,0),1.e-10,&result_0,&err_0);

gsl_deriv_central(&F1,gsl_vector_get(x,1),1.e-10,&result_1,&err_1);

gsl_deriv_central(&F2,gsl_vector_get(x,2),1.e-10,&result_2,&err_2);

gsl_deriv_central(&F3,gsl_vector_get(x,3),1.e-10,&result_3,&err_3);

gsl_deriv_central(&F4,gsl_vector_get(x,4),1.e-10,&result_4,&err_4);

gsl_matrix_set(J,i,0,result_0);

gsl_matrix_set(J,i,1,result_1);

gsl_matrix_set(J,i,2,result_2);

gsl_matrix_set(J,i,3,result_3);

gsl_matrix_set(J,i,4,result_4);

}

return GSL_SUCCESS;

}

int expb_fdf(const gsl_vector *x,void *params,gsl_vector *f,gsl_matrix *J)

{

//Environment for GSL

expb_f(x,params,f);

expb_df(x,params,J);

return GSL_SUCCESS;

}

B Simulation of the Non V-A approximate description 113

void print_state(size_t iter,gsl_multifit_fdfsolver *s)

{

//Output the present calculation

cout << endl << iter << " " << sp(12) << gsl_vector_get(s->x,0) << " "

<< gsl_vector_get(s->x,1) << " " << gsl_vector_get(s->x,2) << " "

<< gsl_vector_get(s->x,3) << " " << gsl_vector_get(s->x,4) << " "

<< gsl_blas_dnrm2(s->f);

}

void Minimizer(double E0,double mnu2,double Rs,double Rb,double bprimed,char *name)

{

//Find the minimum by using the Levenberg-Marquardt algorithm

char sChi[128] = "ChiMin";

strcat(sChi,name);

ofstream wChi(sChi);

DataGenerator gdg;

const gsl_multifit_fdfsolver_type *T;

gsl_multifit_fdfsolver *s;

int status;

size_t i,iter;

for(int j=1;j<=5000;j++)

{

gdg.Calculator(E0,mnu2,Rs,Rb,bprimed);

const size_t NumberMeas = gdg.theMeasurements.size();

const size_t p = 5;

double Wall[NumberMeas];

double Times[NumberMeas];

double ExpData[NumberMeas];

for(i=0;i<NumberMeas;i++)

{

Wall[i] = gdg.thePotentials[i];

Times[i] = gdg.theTimes[i];

ExpData[i] = gdg.theMeasurements[i];

}

struct data d = {NumberMeas,Wall,Times,ExpData};

gsl_multifit_function_fdf f;

double x_init[5] = {18575.3,5.,1.5,1.5,1.};

gsl_vector_view x = gsl_vector_view_array(x_init,p);

f.f = &expb_f;

f.df = &expb_df;

f.fdf = &expb_fdf;

f.n = NumberMeas;

f.p = p;

f.params = &d;

114 Simulation code

T = gsl_multifit_fdfsolver_lmder;

s = gsl_multifit_fdfsolver_alloc(T,NumberMeas,p);

gsl_multifit_fdfsolver_set(s,&f,&x.vector);

print_state(iter,s);

iter = 0;

do

{

iter++;

status = gsl_multifit_fdfsolver_iterate(s);

print_state(iter,s);

if(status)

break;

status = gsl_multifit_test_delta(s->dx,s->x,1.e-24,1.e-24);

}

while(status == GSL_CONTINUE && iter < 500);

(wChi) << endl << pow(gsl_blas_dnrm2(s->f),2.) << " "

<< sp(12) << gsl_vector_get(s->x,0) << " "

<< gsl_vector_get(s->x,1) << " "

<< sqrt(fabs(gsl_vector_get(s->x,1))) << " "

<< gsl_vector_get(s->x,2) << " "

<< gsl_vector_get(s->x,3) << " " << gsl_vector_get(s->x,4);

gsl_multifit_fdfsolver_free(s);

}

wChi.close();

}

int main()

{

//Everything can be run from this line:

Minimizer(18575.,4.,1.,1.,0.,"4eV.dat");

return 0;

}

List of Acronyms

APL Analyzing PLane
BG BackGround
CDM Cold Dark Matter
C.L. Confidence Level
FSD Final State Distribution
GSL GNU Scientific Library
HDM Hot Dark Matter
KATRIN Karlsruhe Tritium Neutrino Mass Experiment
LSS Large Scale Structures
MAC-E filter Magnetic Adiabatic Collimation Electrostatic filter
MC Monte Carlo
Non SM Non Standard Model
Non V-A Non Vector minus Axialvector
SM Standard Model
V-A Vector minus Axialvector
WGTS Windowless Gaseous Tritium Source

116 Simulation code

Bibliography

[1] W.E. Pauli (1930).
Letter to the Physical Society of Tübingen,, unpublished; The letter is reproduced in
Brown, L.M., Physics Today, 31, No. 9, 23 (1978).

[2] E. Fermi.
Versuch einer Theorie der b-Strahlen.
Z. Physik, 88:161 (1934).

[3] F. Reines and C.L. Cowan Jr.
Detection of the free neutrino.
Phys. Rev. Lett., 92:830 (1953).

[4] E.J. Konopinski.
H3 and the mass of the neutrino.
Phys. Rev. Lett., 72:518 (1947).

[5] G. Danby, J.-M. Gaillard, K. Goulianos, L.M. Lederman, N. Mistry, M. Schwartz,
and J. Steinberger.
Observation of high-energy neutrino reactions and the existence of two
kinds of neutrinos.
Phys. Rev. Lett., 9:36 (1962).

[6] M.L. Perl, G.S. Abrams, A.M. Boyarski, M. Breidenbach, D.D. Briggs, F. Bulos,
W. Chinowsky, J.T. Dakin, G.J. Feldman, C.E. Friedberg, D. Fryberger, G. Gold-
haber, G. Hanson, B. Heile, B. Jean-Marie, J.A. Kadyk, R.R. Larsen, A.M. Litke, D.
Lüke , B.A. Lulu, V. Lüth , D. Lyon, C.C. Morehouse, J.M. Paterson, F.M. Pierre,
T.P. Pun, P.A. Rapidis, B. Richter, B. Sadoulet, R.F. Schwitters, W. Tanenbaum,
G.H. Trilling, F. Vannucci, J.S. Withaker, F.C. Winkelmann, and J.E. Wiss.
Evidence for anomalous lepton production in e+ − e− annihilation.
Phys. Rev. Lett., 35:1489 (1975).

[7] R.P. Feynman and M. Gell-Mann.
Theory of the Fermi interaction.
Phys. Rev. Lett., 109:193 (1958).

[8] E.C.G. Sudarshan and R.E. Marshak.
Chirality invariance and the universal Fermi interaction.
Phys. Rev. Lett., 109:1860 (1958).

118 BIBLIOGRAPHY

[9] C.S. Wu, E. Ambler, R.W. Hayward, D.D. Hoppes, and R.P. Hudson.
Experimental test of parity conservation in beta decay.
Phys. Rev. Lett., 105:1413 (1957).

[10] V. Gribov and B. Pontercorvo.
Neutrino astronomy and lepton charge.
Phys. Lett., B28:493 (1969).

[11] R. Davis Jr.
Solar neutrinos. II. Experimental.
Phys. Rev. Lett., 12:303 (1964).

[12] Y. Fukuda et al.
Evidence for oscillation of atmospheric neutrinos.
Phys. Rev. Lett., 81:1562 (1998).

[13] S. Fukuda et al.
Constraints on neutrino oscillations using 1258 days of Super-Kamiokande
solar neutrino data.
Phys. Rev. Lett., 86:5656 (2001).

[14] Q.R. Ahmad et al.
Direct evidence for neutrino flavor transformation from neutral-current
interactions in the Sudbury neutrino observatory.
Phys. Rev. Lett., 89:011301 (2002).

[15] S. Eidelman et al.
Review of particle physics.
Phys. Lett., B592:1 (2004).

[16] S. Hannestad.
Cosmological neutrinos.
New Journal of Physics, 6:108 (2004).

[17] K. Winter.
Neutrino physics.
Cambridge University Press (1991).

[18] F. Boehm and P. Vogel.
Physics of massive neutrinos.
Cambridge University Press (1987).

[19] Ch. Weinheimer, B. Degen, A. Bleile, J. Bonn, L. Bornschein, O. Kazachenko, A. Ko-
valik, and E. Otten.
High precision measurement of the tritium b spectrum near its endpoint
and upper limit on the neutrino mass.
Phys. Lett., B460:219 (1999).

[20] V.M. Lobashev, V.N. Aseev, A.I. Belesev, A.I. Berlev, E.V. Geraskin, A.A. Golubev,
O.V. Kazachenko, Yu.E. Kuznetsov, R.P. Ostroumov, L.A. Rivkis, B.E. Stern, N.A.
Titov, S.V. Zadorohny, and Yu.I. Zakharov.

BIBLIOGRAPHY 119

Direct search for mass of neutrino and anomaly in the tritium beta-
spectrum.
Phys. Lett., B460:227 (1999).

[21] Ch. Kraus, B. Bornschein, L. Bornschein, J. Bonn, B. Flatt, A. Kovalik, B. Ostrick,
E.W. Otten, J.P. Schall, Th. Thümmler, and Ch. Weinheimer.
Final Result from phase II of the Mainz Neutrino Mass Search in Tritium
b Decay.
Eur. Phys. J., C40:447 (2005).

[22] The KATRIN Collaboration.
KATRIN Design Report.
FZKA Scientific Report 7090 (2004).

[23] B. Müller.
Umbau des Mainzer Neutrinomassenexperiments und Untergrundunter-
suchungen im Himblick auf KATRIN.
Dipl. Thesis, Johannes Gutenberg-Universität Mainz (2002).

[24] B. Flatt.
Voruntersuchungen zu den Spektrometern des KATRIN-Experiments.
PhD Thesis, Johannes Gutenberg-Universität Mainz (2004).

[25] H.F. Schopper.
Weak interactions and nuclear beta decay.
North-Holland Pub. Co. (1966).

[26] F. Glück.
Beta decay beyond the Standard Model.
Public talk, Johannes Gutenberg-Universität Mainz (2000).

[27] C.P. Enz.
Fermi interaction with non-conservation of lepton charge and of parity.
Il nuovo cimento, VI:1 (1957).

[28] J. Ciborowski and J. Rembielinski.
Tritium decay and the hypothesis of tachyonic neutrinos.
Eur. Phys., C8:157 (1999).

[29] J.M. Carmona and Cortés J.L.
Testing Lorentz invariance violations in the tritium beta-decay anomaly.
Phys. Lett., B494:75 (2000).

[30] A. Saenz, S. Jonsell, and P. Froelich.
Improved molecular final-state distribution of HeT+ for the beta-decay
process of T2.
Phys. Rev. Lett., 84:242 (2000).

[31] N. Doss.
Public talk, BSCW 95-TRP-1712-Doss.ppt; KATRIN BSCW server.

120 BIBLIOGRAPHY

[32] W. Kündig, E. Holzschuh, M. Fritschi, and H. Stüssi.
Direct measurement of the neutrino mass.
In Winter, K. (ed.): Neutrino physics (1992), p.144.

[33] A. Sirlin.
General properties of the electromagnetic corrections to the beta decay of
a physical nucleon.
Phys. Rev., 164:1767 (1967).

[34] F. Schwamb.
Untergrunduntersuchungen für das KATRIN-Experiment.
PhD Thesis, Universität Karlsruhe (2004).

[35] S. Sanchez.
Study of background suppression in MAC-E filters.
Dipl. Thesis, Johannes Gutenberg-Universität Mainz (2003).

[36] A.I. Belesev et al.
Results of the Troitsk experiment on the search for the electron anti-
neutrino rest mass in tritium beta decay.
Phys. Lett., B350:263 (1995).

[37] J. Kaspar.
Influence of energy scale imperfections on neutrino mass sensitivity in the
KATRIN experiment.
Dipl. Thesis, Institute of Nuclear Physics, Rez/Prague (2003).

[38] J.P. Schall.
Untersuchungen zu Untergrundprozessen am Mainzer Neutrinomassenex-
periment.
Dipl. Thesis, Johannes Gutenberg-Universität Mainz (2001).

[39] L. Lyons.
Statistics for nuclear and particle physicist.
Cambridge University Press (1986).

[40] G. Audi, A.H. Wapstra, and C. Thibault.
The AME 2003 atomic mass evaluation.
Nucl. Phys., A729:337 (2003).

[41] J. Bonn.
Private communication.
Johannes Gutenberg-Universität Mainz.

[42] K. Blaum.
High accuracy mass spectrometry with stored ions.
Phys. Rep., 425:1 (2006).

[43] GSL Manual.
http://www.gnu.org/software/gsl/manual.

BIBLIOGRAPHY 121

[44] MINUIT Manual.
http://seal.web.cern.ch/seal/snapshot/work-packages/mathlibs/minuit/.

[45] GMP Manual.
http://www.swox.com/gmp.

[46] G.C. McLaughlin and J.N. Ng.
The use of nuclear b-decay as a test of bulk neutrinos in extra dimensions.
Physical Review, D63:053002 (2001).

122 BIBLIOGRAPHY

Acknowledgements

I would like to start by expressing my gratitude specially to Dr. Jochen Bonn. For
being so patient with me and letting me face the work my way. For teaching me physics
and for so many interesting and intelligent conversations. And of course, for giving me
the opportunity to join his group and to get to know this wonderful country.

I also want to thank Dr. Klaus Blaum for being very supportive with me, for his
corrections of the thesis as well as for being also responsible of my chance to join the
Johannes Gutenberg-Universität Mainz.

To Dr. Ferenc Glück and Dr. Klaus Eitel, for many valuable discussions and
teaching, also for checking my work and giving me many good advices.

To Prof. Dr. Ernst Otten, for guiding me with his wise insight into the tachyonic
problem.

I would like to say thanks to the Spanish community of Mainz, who made me feel
a bit closer to home. Mainly, to Ana and Cris who cheered me up just by smiling. Also,
to Raquel and Fidel who witnessed the development of this work day by day. To Jou
from Mainz and Juan Angel and David from Spain who helped me out everytime my
computer crashed.

Además, me gustaŕıa decir gracias a Pablo, Germán, Ricardo y de nuevo a David,
porque nunca hubo cinco personas tan peculiarmente entrelazadas. Soy consciente de que
tengo mucho que agradeceros.

Por último, el agradecimiento más profundo y sentido es a mi familia, porque nunca
nadie ha tenido un mejor ejemplo de abnegación y buena voluntad. Especialmente a mis
padres, por ser los mejores padres que se puede imaginar. Os quiero.

