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Ich erkläre hiermit, dass ich die vorliegende Arbeit selbständig verfasst und keine
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1. Introduction

The KArlsruhe TRItium Neutrino (KATRIN) experiment is a formidable project.
Scientists from fifteen institutions in Germany, Russia, Czech Republic, Great Britain
and the United States work together on the ambitious goal to answer one of the most
important open questions in modern neutrino physics: What is the absolute mass
scale of neutrinos?

KATRIN’s dimensions are massive: its total length is 70 meters and the spectrometer
alone weighs over 200 tons. It is located on the Campus North of the Karlsruhe
Institute of Technology (KIT). The ultra-precision experiment requires a mastery of
a wide spectrum of science and engineering, involving molecular and nuclear physics,
vacuum and cryogenic technology and sophisticated programs for the data analysis.
A team of 150 scientists, engineers and students is committed to working hard for
the success of this project.

My first involvement with the KATRIN experiment was in the group of Dr. Alan
Poon at the Lawrence Berkeley National Laboratory in Berkeley, California (USA).
Together with Dr. Markus Hötzel I worked within a student exchange program on
the implementation of the Unified Approach by G. Feldman and R. Cousins for the
neutrino mass analysis with KATRIN. This method represents an ingenious way
to construct correct confidence belts, even in regions close to unphysical values.
Though the results were encouraging, it will not be included in this thesis. The
results can be found in [Höt12] and [Scha12].

For my diploma thesis that I started roughly a year ago in the summer of 2012,
I stayed in the intriguing field of simulation and data analysis. For many years,
the existence of a hypothetical particle, the sterile neutrino, has been discussed
vividly. It has been suggested in [dVeg+11] that an extension of the KATRIN
experiment might open the possibility to detect these particles. As a serious dark
matter candidate, sterile neutrinos could answer the question what our universe
really consists of.
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In order to augment KATRIN’s abilities towards this search a new, intricate cal-
culation of the tritium β-decay spectrum is necessary. Also, a more sophisticated
approach for the analysis of the measured data is required. The fitting routines
that are sufficient for the measurement of the mass scale of regular neutrinos cannot
deal with too many free parameters. The existence of a sterile neutrino would add
a second minimum and further parameters to the likelihood function, so that new
analysis methods are in order.

It is the objective of this thesis to deal with both of these endeavors.

Knowing the shape of the tritium β-decay spectrum as accurately as possible is
important because the existence of a sterile neutrino would lead to a kink in the run
of this curve. For this purpose intricate corrections to the spectrum were calculated
and implemented into the KATRIN analysis software.

Until recently, only frequentist methods were used for the evaluation of the measured
data of a simulated run. These methods have now been extended by the implemen-
tation of Bayesian Markov Chain Monte Carlo (MCMC) methods. These routines
offer a variety of advantages for the present-day KATRIN experiment as well as for
the future detection of sterile neutrinos. They are very stable and robust, give pre-
cise confidence intervals and offer a chance to implement prior information correctly.
Their ability to handle a vast amount of free parameters makes them perfect to deal
with fits for the sterile neutrino analysis.

This work on MCMC methods was conducted at KIT and at the Massachusetts
Institute of Technology, where I stayed in late summer and fall of 2012 in the group
of Prof. J. Formaggio. I presented the results at the KATRIN Collaboration meeting
2013 and at the 77th Annual Meeting of the DPG, the German Physical Society
[Scha13a] [Scha13b].

This thesis is structured as follows.
The second chapter deals with the fundamental principles of neutrino- and astro-
physics that are the motivation for ultra-precision experiments like KATRIN.

In chapter 3 the KATRIN experiment is presented. This discussion is divided into
two parts. At first the experimental setup is presented. Then we deal with the
measurement principle and the general data analysis.

The fourth chapter extends the scope of this thesis towards sterile neutrinos. The
idea of dark matter is outlined and its hypothetical composition is summarized.
Subsequent to the introduction of sterile neutrinos as a dark matter candidate,
KATRIN’s abilities towards their detection are discussed.

A precise knowledge of the spectrum of tritium β-decay is essential to discover these
particles. Chapter 5 gives the most important augmentations: Fermi- and Coulomb
corrections, radiative corrections and an extended final state distribution for the
description of the energy lost due to excitations of the daughter nuclei. A complete
spectrum is presented and the different corrections are analyzed.
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Chapter 6 deals with the second and most extensive part of this thesis. Three
different MCMC methods are presented: MCMC with a Gaussian transition ker-
nel, Hamiltonian Monte Carlo and Riemannian Manifold Hamiltonian Monte Carlo.
The pros and cons of all methods are compared and results for simulated KATRIN
measurements are demonstrated.

Finally, chapter 7, gives an overview of what we have seen in this diploma thesis, in
which the most important results will be summarized.
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2. Neutrino- and Astrophysics

This chapter provides some of the basics that are needed to motivate the KATRIN
experiment and to understand this thesis. As mentioned in the introduction, the
goal of the experiment is to measure the mass of the neutrino. But why do we want
to know the mass of one of the lightest particles in the universe?
In order to understand this we first have to comprehend what a neutrino is. There-
fore, in the first section of this chapter, the history of the neutrino is illustrated.
After that we have a look at their properties and their place in one of the most
important theories in modern physics: the standard model (section 2.2). In section
2.3 the scope is extended beyond this theory. It deals with neutrino oscillations that
are proof that neutrinos are not massless as described by the standard model. The
options to determine its mass are discussed in section 2.4. After that, section 2.5 is
dedicated to the effects the precise measurement of the neutrino mass will have on
astrophysics. This also answers the opening question about the great importance of
such a tiny parameter. To round of this chapter, we have a look at evidences for
neutrino-like particles that do not interact weakly and therefore are called sterile
neutrinos (section 2.6). These particles will be discussed even further, together with
KATRIN’s abilities to measure them, in chapter 4.

2.1 History of Neutrino Physics

In the late 1920s and early 1930s there was an energy crisis quite different from
what we experience today. Rather than oil, it was about fundamental physics: the
law of conservation of energy, one of the very foundations of physics, was shaking.
The reasons were observations of the nuclear β-decay. These had shown that the
spectrum of the β-electron was continuous, which meant that somehow energy was
lost in the decay process. When even Niels Bohr started to lose faith, the Austrian
physicist Wolfgang Pauli postulated the existence of a new particle that was created
in the β-decay along with the electron. This particle was light, neutral, had spin-1

2

and was accountable for the lost energy, which went into its mass and kinetic energy.
It was later named neutrino (“little neutral object”) by Enrico Fermi. At first it
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seemed impossible to verify the existence of such a weakly interacting, light particle1.
Even though its detection did not succeed for another 23 years, it eventually saved
the laws of energy and momentum conservation. [Cald01]
The two physicists C. Cowan and F. Reines finally discovered the neutrino in 1953.
At a nuclear reactor in Hanford, Washington, they used the ability of protons to
capture electron antineutrinos according to the nuclear equation,

p+ ν̄e → n+ e+, (2.1)

which is a kind of “inverse β-decay” with a neutron and a positron in the final state
2. They measured both, the neutron and the positron, simultaneously and thereby
were able to discriminate the signal from background radiation. For their discovery
they were awarded the Nobel Prize in Physics in 1995. [GrBu12]
The next big step was the insight that there is more than one neutrino. Danby et
al. showed in 1962 that muon neutrinos are different from electron neutrinos. They
studied neutrinos that were created in the decay of pions. In interactions, these
neutrinos produced µ mesons, unlike the electron neutrinos that produced electrons.
For this observation L. Lederman, M. Schwartz and J. Steinberger were rewarded
with the Nobel Prize. [Danb+62]
Another milestone of neutrino physics are the solar neutrino experiments by R.
Davis. In 1970 he observed the chemical reactions in a huge tank full of CCl4.
Argon atoms were created by the capture of solar electron neutrinos3:

νe + 37Cl→ e− + 37Ar. (2.2)

Contrary to expectations, he measured a neutrino flux of only one third of the
expected flux. This observation became known as the “solar neutrino problem” and
was resolved by the theory of neutrino oscillations (see section 2.3). It states that
neutrinos have a mass and can change flavors. [Zube12]
In 1975 Perl et al. found indications for the existence of the last of the three
active neutrinos. Observing electron-positron annihilations they reported missing
energy that could not be explained by conventional means, but by the production of
additional particles [Perl+75]. These particles turned out to be the τ -lepton and the
corresponding τ -neutrino. The discovery of the lepton was awarded with a Nobel
Prize as well. In 2000 the DONUT experiment (Direct Observation of NU Tau)
published the first detection of the tau neutrino at Fermilab.
For everyone who was hoping to get another piece of the Nobel Prize cake that
was being cut after most of these discoveries, the subsequent LEP experiments were
a small disappointment. From 1993 to 2006 the width of the Z0-resonance was
measured directly at CERN. This led to a value of 2.93 ± 0.05 for the number of
light ν types. [Voge10] [Grou07]
In the last thirty years a variety of experiments with atmospheric, solar, reactor and

1W. Pauli, himself, said: “I have done a terrible thing, I have postulated a particle that cannot
be detected.”. [Sutt92]

2Originally, they considered using a nuclear explosion in order to create a neutrino pulse that
was stronger than the background radiation. [GrBu12]

3The major fusion processes in the Sun are the proton-proton chain and the CNO cycle. Among
these the proton-proton chain is dominant. In all processes only electron neutrinos are created.
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accelerator neutrinos have been conducted. They confirmed two major discoveries.
For one thing the neutrinos do have a very small but finite mass and, on the other
hand, there really is neutrino mixing, as suggested by B. Pontecorvo. In 2012 the
last of the three neutrino mixing angles was determined in China at the Daya Bay
experiment [Daya12]. The mass, however, is still not known precisely because no
model-independent measurement provided the needed sensitivity. With KATRIN
this might change.
But not everything that was measured by these experiments could be explained right
away. The Gallium and reactor anomalies, for example, are results that, for their
proper explanation, require a new particle: the sterile neutrino. This particle is
even harder to detect than the regular neutrino and could explain the dark matter
phenomenon4. These results show once again that neutrino physics still provides
plenty of exciting areas of research.

2.2 Neutrinos and the Standard Model

The standard model is one of the very foundations of particle physics. It describes
the elementary particles that make up all baryonic matter and the gauge bosons that
are the force carriers between them. In 2012 the last particle of the standard model
was - in all likelihood - discovered at CERN: the Higgs boson that is responsible for
the mass of all massive particles. A conceptual illustration of this theory is depicted
in figure 2.1. The gauge bosons are the photon (carrier of the electromagnetic force),
the gluon, which is responsible for the strong force, and the force carriers of the weak
force, Z0 and W±. Not included is the carrier of the gravitational force, as gravity is
not part of the standard model. The Higgs boson, with an assumed mass of 125 GeV,
is the particle that is responsible for the mass of all other elements [CMS-12].
There are six quarks, up and down, charm and strange, top and bottom, and six
corresponding antiquarks. The quarks are spin-1

2
fermions and carry an electric

charge of −1
3

or +2
3

and a color charge. Up to this point quarks have only been
observed in bound states, either as baryons (net quark number of three) or mesons
(quark-antiquark pair with a net quark number of zero). The net quark number is
assumed to be constant; however, quark-antiquark pairs can be created or destroyed.
[CoGr07]
Leptons are the third group of particles and include the neutrinos. They are, like
quarks, spin-1

2
fermions. There are three charged leptons: electron e−, muon µ−

and tau τ− and, as predicted by the Dirac equation, there is an antiparticle with
opposite charge for each of them: e+, µ+ and τ+. Of these only e− and e+ are stable.
One observes that the charged leptons are associated with corresponding neutrinos,
the electron neutrino νe, the muon neutrino νµ and the tau neutrino ντ . There are
also three anti neutrinos: ν̄e, ν̄µ and ν̄τ . [CoGr07]
Just like the charged leptons, the neutrinos are spin-1

2
fermions. They carry neither

electric, nor color charge and so far only left-handed neutrinos (helicity H = −1)
and right-handed antineutrinos (H = +1) have been observed. [Zube12]
Even though the standard model is a very convenient theory, it has its shortcomings.
As mentioned above, it does not include gravity, only the three other fundamental

4For more information about sterile neutrinos see section 2.6 and chapter 4 of this thesis.
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Figure 2.1: An illustration of the standard model of particle physics. Not included
is the mass of the Higgs boson. This particle is assumed to have been detected at
CERN in 2012. Its mass is supposed to be 125 GeV [CMS-12]. [webs12]
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forces. Another point of criticism is that there are 18 free parameters that need to
be measured and are not predicted by the theory [Zube12]. Important for this thesis
is another deficit: standard model neutrinos are massless. However, there are many
experimental results that indicate that neutrinos have a mass. One of the first of
these observations was the fact that neutrinos oscillate.

2.3 Neutrino Oscillations

The observation of neutrino oscillations was one of the first indicators for physics
beyond the standard model. Less than 50 years ago, R. Davis observed solar neu-
trinos and measured the flux of electron neutrinos to be about one third of the flux
predicted by the standard solar model. This became known as the “solar neutrino
problem” and caused many questions. Did this mean that it was not completely un-
derstood how the sun creates energy? Or did the neutrinos get lost on the way? The
answer is startling: the neutrinos do not get lost on the way, they simply change
their flavor - from electron neutrinos to muon and tau neutrinos. This change is
known as neutrinos oscillations and implies that neutrinos do have a mass, because
the separate mass eigenstates need to have different masses. The experiments that
measured the solar electron neutrino flux were not sensitive to these other flavors.
To test the hypothesis of neutrino oscillations the Sudbury Neutrino Observatory
(SNO) was built in Canada. Its detector was filled with 1000 tons of heavy water
and was sensitive to all three types of neutrino flavors. In the beginning of this mil-
lennium the SNO collaboration managed to resolve the solar neutrino problem by
the demonstration of neutrino oscillations [SNO-01]. But how do these oscillations
work?
Neutrino oscillations are a quantum mechanical interference phenomenon with close
analogies to the mixing of left-handed quarks. The origin is the fact that the neu-
trino mass eigenstates are not equal to the flavor eigenstates of neutrinos. The
flavor eigenstates νe,µ,τ can be written as a superposition of the mass eigenstates
ν1,2,3. This is elucidated with the PMNS-matrix that was introduced by Z. Maki,
M. Nakagawa and S. Sakata and is depicted in eq. (2.3). The P in PMNS stands for
B. Pontecorvo, who predicted the oscillations as early as 1957. [Mach05]νeνµ

ντ

 =

Ue1 Ue2 Ue3
Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3

ν1

ν2

ν3

 (2.3)

U is a unitary, Hermitian matrix that includes three mixing angles and a CP-
violating phase δ. According to [Mach05] it can be written as:Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3

 =

1 0 0
0 c23 s23

0 −s23 c23

 ·
 c13 0 s13e

iδ

0 1 0
−s13e

iδ 0 c13

 ·
 c12 s12 0
−s12 c12 0

0 0 1

 ,

(2.4)
where the abbreviations sij = sin θij and cij = cos θij were used. The first matrix
describes the transition between µ and τ neutrinos, the second matrix the transition
between e and τ neutrinos and the third matrix the transition between e and µ
neutrinos. Possible Majorana CP violating phases can be described by two additional
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phase factors, which are not depicted in eq. (2.4).
With the use of this identity the electron neutrino at time t = 0 can be described
with the wave function

Ψ(0) = |νe〉 = Ue1 |ν1〉+ Ue2 |ν2〉+ Ue3 |ν3〉 . (2.5)

The eigenfunctions of the mass operator are the propagating states and after a
certain time ∆t the evolved state can be written as

Ψ(x) =
3∑
j=1

ei(pjx−Ejt)Uej |νj〉 , (2.6)

where E denotes the energy, p the momentum and x = ct. The flavor of the |νe〉
changes after a certain propagation length with a non-zero probability, which can
be calculated. [Mach05]
From solar and atmospheric neutrino oscillation observations the square of the mass
differences can be determined to be [Barn+96]

∆m2
12 = (7.59± 0.20) · 10−5 eV2,

∆m2
23 = (2.43± 0.13) · 10−5 eV2.

(2.7)

However, this does not allow any conclusions about the absolute mass. Neither does
it tell us which neutrino is the heaviest5. That means another way to measure the
absolute mass scale has to be established. [MoPa04]

2.4 The Measurement of the Neutrino Mass

Neutrinos are the most abundant particles in the universe and as such involved in
many different phenomena. That is why there is theoretically a variety of options for
the determination of their mass. Due to the smallness of their mass and the ability of
neutrinos to penetrate even massive structures without interaction, the measurement
is nevertheless a complicated undertaking. In the following the different approaches
are listed.

2.4.1 The Neutrino Mass in Cosmology

Cosmological studies that are of relevance for neutrinos include cosmic microwave
background radiation (CMBR) surveys and large scale structure (LSS) experiments,
like Lyman-α-forest observations and galaxy redshift surveys (GRS). The CMBR
is studied with satellites like WMAP [Spot03] and Planck [Plan13] and the biggest
galaxy redshift surveys are 2dF [O.El+02] and SDSS [SDSS09]. The combined results
of these experiments can be used to determine the contribution Ων of all neutrinos
to the total mass in the universe. Together with the calculated neutrino density of
336 1

cm3 this number can be used to calculate the neutrino mass.

5There are two possible scenarios: normal hierarchy (m1 > m2 > m1) and inverted hierarchy
(m2 > m1 > m3).
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V. Barger et al. combined, for example, the results from SDSS, 2dFGRS and WMAP
to determine the sum of all three neutrino masses to be [BaMT04]∑

mν < 0.75 eV. (2.8)

Other groups have reported results that are in the same range, but nevertheless
different6. This reveals one of the major drawbacks of the cosmological neutrino mass
studies: Different values for important input parameters can be used to describe the
same measured data equally well, but with different implications for the neutrino
mass. In order to get rid of these degeneracies further assumptions are needed. Thus
the neutrino mass we obtain from cosmology is not model-independent. [KATR04]

2.4.2 The Neutrino Mass in Astrophysics

There are several ways to use astrophysical observations for the measurement of the
neutrino mass. Two of the most promising approaches are time-of-flight measure-
ments of supernovae neutrinos and estimations with ultra high energy cosmic rays
(UHECR).
In a supernova, which is the explosion of a massive star at the end of its lifetime, an
order of 1058 neutrinos are emitted [Beac99]. In figure 2.2 the remnants of the last ex-
ploding supernova in our Milky Way galaxy are shown. The ν-burst can be detected
on earth with neutrino telescopes like IceCube and Super-Kamiokande. Neutrinos
have a mass, so there should be a difference in the time-of-flight of these neutrinos
compared to notional massless neutrinos, because some of the energy went into its
mass. This time difference can be measured and as a reference either black holes or
data from gravitational wave experiments can be used additionally [KATR04]. A
sensitivity of

mν = 0.75 eV (95 % C.L.) (2.9)

is expected. However, the results can be influenced by neutrino oscillations or the
like. [KATR04]
The cosmic ray approach towards the neutrino mass measurement uses estimations
based on the Z-model. This model predicts that UHE neutrinos annihilate with
massive relic neutrinos into Z-bosons. With the use of a relation between Z-mass,
neutrino mass and the resonance energy, simulations can be made to compute the
ν-mass. Drawbacks of this method are that the Z-burst theory is not entirely proved
and that the statistics of the experimental data (e.g. from the Fly’s Eye experiment)
is limited and the systematic errors not fully understood. Results were given by
[FoKR02]:

mν = 2.75+1.28
−0.97 eV for Galactic halo origin, (2.10)

mν = 0.26+0.20
−0.14 eV for extragalactic origin. (2.11)

Independent data from KATRIN can be used to test this theory. [KATR04]

6This is demonstrated in Table 1 of [KATR04].
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Figure 2.2: The latest supernova in the Milky Way galaxy. It is called Kepler’s
supernova because it was observed by the famous astronomer in 1604. Observations
from the Chandra X-ray Observatory, the Hubble Space Telescope and the Spitzer
Space Telescope were combined for this photomontage [NASA04].
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2.4.3 The Neutrino Mass in Neutrinoless Double-β-Decay

Regular, two neutrino double-β-decay (2νββ) is a weak decay process of second
order that is explained within the Standard Model. Neutrinoless double-β-decay
(0νββ), on the other hand, is beyond the Standard Model. It is the decay of two
neutrons,

2n→ 2p+ 2e−, (2.12)

into two protons and two electrons and works only if the neutrinos are Majorana
particles, i.e. their own antiparticles. The ν̄e emitted at the first decay is then
absorbed as a νe in the other decay. Hence no neutrinos can be detected.
Theoretically, the 0νββ-decay can take place in any β-emitter, however, it is much
less likely than 2νββ.
Experiments that look for 0νββ measure the decay products and determine the half-
life T0νββ

1
2

of this decay. From T0νββ
1
2

the effective Majorana neutrino mass can be

calculated.
A famous example for an experiment looking for this rare decay is the Heidelberg-
Moscow experiment. It yielded an upper limit for the effective Majorana neutrino
mass [BoUr01]

meff. < 0.35 eV (90 % C.L.). (2.13)

The data analysis of this experiment was very controversial [FeSV03]. Nevertheless,
more recent results from the Enriched Xenon Observatory (EXO) give a similar out-
come. This experiment used liquid 136Xe as both, source and detector. Depending
on the matrix element calculation the calculated effective Majorana mass is

meff. < (0.14− 0.38) eV (90 % C.L.). (2.14)

according to [EXO-12].

2.4.4 Direct Neutrino Mass Measurements with β-Decay

The neutrinoless double-β-decay only works if the neutrinos are in fact Majorana
particles. Direct measurements have the advantage that they do not require this
assumption. Next to time-of-flight investigations, which were presented in section
2.4.2, β-decay studies are the most suited for the direct neutrino mass measure-
ment. This investigation makes use of the relativistic energy momentum relation
E2 = p2c2 +m2c4 and the laws of energy and momentum conservation.
Quite generally, the functional principle is to measure the energy of all decay prod-
ucts, but the neutrino, which cannot be detected. With this data and sufficient
statistics one can infer the neutrino mass.
For the masses of νµ and ντ the decay of pions into muons was studied [K.As+96].
The upper limits obtained thereby are in the range of keV or even MeV. This is
much higher than the cosmological constraints for the neutrino mass. β-decay ex-
periments, on the other hand, are sensitive in the eV-range and therefore promising
for νe mass measurements. [KATR04]
There are several experiments that study this decay. The Microcalorimeter Arrays
for a Rhenium Experiment (MARE) uses 187Re and is currently running. The Mainz
and Troitsk experiments are already finished and yielded the results [KATR04]:

m2
ν ,Mainz = (−0.6± 2.2± 2.1) eV2 (2.15)
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m2
ν ,Troitsk = (−2.3± 2.5± 2.0) eV2. (2.16)

Like KATRIN these experiments studied the decay of tritium,

3
1H→3

2 He+ + e− + ν̄e, (2.17)

Which will be discussed even further when we have a look at KATRIN’s measurement
principle in section 3.2. Tritium has the advantage of a simple nuclear structure and
a suitable lifetime of T T1

2

= 12.3 years.

2.5 The Influence of the Neutrino Mass on Astro-

physics and Cosmology

As shown in the previous section, there are many different ways to measure the
neutrino mass. But this still does not answer the question why one is interested in
the mass of such a tiny particle in the first place.
The neutrino is an elementary particle and it should be in every experimental physi-
cist’s interest to measure its mass to complete mankind’s understanding of the uni-
verse. Neutrinos have a significant influence on the total matter distribution. It is
known that there are on average 336 1

cm3 neutrinos in the universe and so far there is
only an upper limit from model-independent measurements on their mass. Neutri-
nos could be accountable for a part of the mysterious substance that is dark matter.
As very fast moving particles they are a candidate for hot dark matter 7.
Another important use of the neutrino mass is that it can be used as an input
parameter for the CMBR and LSS data analysis. The interpretation of this data
with the use of a precise neutrino mass will increase our understanding of structure
formation and Big Bang Nucleosynthesis. The higher accuracy will have positive
effects on the whole field of cosmology and ensure precise future measurements.
It is particularly important to have a model-independent measurement of m2

ν , which
can be used to verify other results and to cross-check experimental data. This is why
KATRIN is a vital addition to the other experiments - model-independent, precise
and without any presumptions. [KATR04]

2.6 Evidences for Sterile Neutrinos

So far mainly regular - also called active - neutrinos have been discussed. Neutrino
experiments, however, did not only find these, but also evidence for particles that are
even harder to detect. These particles are quite similar to neutrinos, however, they
do not interact weakly. This lack of weak interaction gave them the prefix sterile.
In this section only evidences for sterile neutrinos are listed. Their properties and
especially their connection to the KATRIN experiment will be presented later, in
chapter 4.
Among others, the gallium anomaly as well as the reactor anomaly are indicators
for their existence.

7See also section 4.1.
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Figure 2.3: This figure from [Ment+11] shows the reactor anomaly. On the y-axis
the ratio of observed to predicted events is plotted as a function of the distance from
the reactor. The blue line shows a solution with the assumption that there are only
three active neutrinos. For the green line a sterile neutrino was taken into account
as well. The latter is able to reproduce the measurements better [Schw12].

Gallium anomaly is the term for observations made with the GALLEX and SAGE
solar neutrino detectors. They are operated with Chromium and Argon sources and
the neutrinos are detected with the neutrino capture of Gallium,

71Ga + νe → 71Ge + e−1. (2.18)

Both detectors measure values that are significantly (3σ) lower than the expected
rates. An anomaly that could be explained with the existence of at least one sterile
neutrino that mixes with the active ones [AcGL07] [GiLa10].
The reactor anomaly describes a similar phenomenon. Nuclear reactors are observed
and the neutrino flux is measured. Then the values are compared with a theoretical
spectrum, which was calculated by Schreckenbach et al. (in [Schr+85] and further
publications) and improved recently by Mueller et al. [Muel+11]. Again, one ob-
serves a deficit of ν̄e, as is shown in figure 2.3. According to [Schw12] a sterile
neutrino can account for the reduction [Ment+11].
Besides these two evidences there are more experimental results that lead to similar
conclusions. Short baseline appearance data and global data on νe disappearance
suggest the existence of sterile neutrinos, as well as the results of the Liquid Scintil-
lator Neutrino Detector (LSND) experiment. More information about these can be
found in [Schw12].
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3. The Karlsruhe Tritium
Neutrino Experiment

The previous chapter was dedicated to neutrinos. Their basic properties were shown
and different approaches to measure their mass were presented. Also, the KATRIN
experiment was introduced as a direct, model-independent measurement, which, af-
ter three years of data taking, will reach a sensitivity of less than 200 meV

c2
at 90 %

C.L. [KATR04].
In the following chapter the experiment, which is currently set up on the KIT Cam-
pus North site, is discussed. In section 3.1 the experimental setup is explained.
After that, section 3.2 deals with the precise way how KATRIN will measure m2

ν .
The subsequent sections are about simulation and analysis. Section 3.3 shows how
KATRIN measurements can be simulated. It is explained in section 3.4 how either
the simulated, or real measured data can be analyzed.

3.1 Experimental Setup

As illustrated in figure 3.1, KATRIN consist of several components. The most
important parts are explained in the following subsections.

3.1.1 Source

The source, also called WGTS (Windowless Gaseous Tritium Source), is where the
tritium decays into helium, an electron and an electron antineutrino. There are
two major demands that need to be met by the WGTS. Most importantly it has to
ensure a stable flow of β-electrons towards the spectrometer. And second, it needs
to be controllable and monitorable [Babu+12].
The WGTS is 10 meters long, has an inner diameter of 90 millimeters and it is fed
with molecular tritium gas from the Tritium Labor Karlsruhe, which is one of the few
places with sufficient tritium to run the experiment. Thanks to a two-phase liquid
Neon thermosiphon cooling system, the tritium gas is kept at 27 K with fluctuations
of only a few mK [Groh+13]. The T2 purity of 95 % is closely monitored [Schl+11].
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Figure 3.1: Overview of the setup of the 70 m long KATRIN experiment. The
different parts are explained in the text. [KATR13]

β-electrons from the other components, mainly DT and HT, have different energies
that need to be taken into account for the analysis. The WGTS also ensures a stable
pumping pressure [Fisc+11] that keeps the amount of gas inside the source – and
consequently the number of decays – stable.
The WGTS is operated as follows. Strong magnetic fields with 3.6 T guide the
tritium β-decay electrons towards the spectrometer, while the gas density is kept
stable to guarantee a uniform flow of electrons. The total flow is 1.7 · 1011 electrons
per second. [KATR13]

3.1.2 Transport Section

The next step in the journey of the β-electrons is the transport section that guides
them towards the spectrometers. Because of the limited tritium inventory of a few
grams, it is mandatory to lead all of the T2-gas that enters the transport section back
into the WGTS. Also, inside the spectrometer tritium and other ions would cause
unwanted background. For these reasons a Differential Pumping Section (DPS2F)
and a Cryogenic Pumping Section (CPS) are installed between the WGTS and the
spectrometers.
The DPS consists of beam tubes within a superconducting solenoid and is equipped
with four turbo-molecular pumps that can pump more than 2000 liters per second
[Luki+12].
As the name of the CPS suggests, it uses cryo-sorption to trap the remaining tritium.
The beam tube is cooled down to about 3 K. Its inside is covered with Argon frost,
which binds the remaining tritium [Gil+10].
The electrons are not affected by these elaborate systems. The tritium pressure,
however, is decreased by twelve orders of magnitude at the end of the transport
section. [KATR13]

3.1.3 Spectrometer Section

After they passed the transport section the β-electrons arrive at the spectrometer
section. There are three spectrometers: Pre-Spectrometer, Main Spectrometer1 and

1The main spectrometer is one of the most impressive parts about KATRIN. It is the first
ultra-high vacuum vessel of this size and manufacturing and the transport to Karlsruhe were a
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Figure 3.2: The BBC picture of the year 2006 shows the KATRIN Main Spectrom-
eter during the transport through Leopoldshafen. [BBC13]

the Monitor Spectrometer that is used to surveil the voltage stability of the main
spectrometer.
The Pre-Spectrometer suppresses the β-electrons with low energies, because they
do not carry any information about the endpoint of the spectrum and therefore
no information about m2

ν . Only the β-electrons with high energies pass the Pre-
Spectrometer and enter the 200 t Main Spectrometer.
The Main Spectrometer only allows electrons with an energy higher than a variable
threshold to pass towards the detector. Both spectrometers are operated as MAC-E
filters, a measuring principle that is explained in 3.2.2. The electrons are guided
magnetically through them.
To guarantee the high precision of the experiment all background events and colli-
sions have to be minimized. For this purpose the vessel is operated with ultra-high
vacuum and a variety of methods to suppress backgrounds have been installed. A
photo of the main spectrometer can be seen in figure 3.2.

3.1.4 Focal Plane Detector

After passing the spectrometer section, where they have been retarded and reac-
celerated, the remaining β-electrons arrive at the focal plane detector (FPD). The
FPD sits inside a superconducting magnet that is shielded against backgrounds of
all kind. It is a multi-pixel silicon semiconductor detector with an energy resolu-
tion of 1.4 keV (FWHM) per pixel. In order to improve the analysis and subtract

major challenge. Interesting videos about the scientific background, manufacturing and transport
can be found on the “KITVideoclips”-channel on youtube [KATR06].
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background events the position of the electrons is measured as well. One obtains an
integrated spectrum of the flux of the tritium β-decay electrons with energies near
the endpoint of the spectrum.

3.2 Measurement Principle

Now that we have seen how the experiment is set up, we can have a look at how this
instrument can determine the mass of one of the smallest particles in the universe.
The total energy that is released in the tritium β-decay is branched out to:

• the mass and the kinetic energy of the β-electron,

• the mass and the kinetic energy of the electron antineutrino ν̄e and to

• the recoil energy and excitations of the daughter nuclei HeT+.

In order to determine the rest mass of the electron antineutrino ν̄e we need to un-
derstand how the energy is distributed to the different components. The excitations
of HeT+ are a statistical process that was calculated by Doss et al. specifically for
the KATRIN experiment. This final state distribution is discussed later, in section
3.3. The mass of the electron is known and its kinetic energy is measured. Close to
the endpoint of the spectrum the kinetic energy of ν̄e can assumed to be vanishing.
Therefore it is this region that gives the wanted information about the neutrino mass
that can be optimized with the use of complex data analysis algorithms (see section
3.4).

3.2.1 Calculation of the Fundamental β-Decay Spectrum

In order to carry out a proper analysis of the endpoint region, one needs to know the
shape of the spectrum very well. The tritium β-decay spectrum can be calculated
using Fermi’s golden rule,

λ =
2π

~
|Mfi|2ρE, (3.1)

where λ is the decay constant, Mfi is the matrix element of the perturbation between
the final and the initial state and ρE is the density of states [Blec10]. This equation
was first formulated by Wolfgang Pauli in 1926, but Fermi named it 14 years later
and the name stuck [Blec10]. It gives the transition probability of one quantum-
mechanic state to another. Beginning with this equation and taking into account
the Fermi function F (Z,E) one obtains the energy spectrum,

dN

dE
= C×F (Z,E)p(E+mec

2)(E0−E)
[
(E0 − E)2 −m2

ν

] 1
2 Θ(E0−E−Mν), (3.2)

with E and mν denoting energy, respectively mass of the electron and E0 corre-
sponding to the endpoint energy. The Θ-function takes care of the conservation of
energy. [KATR04]
The difference of a neutrino with mass compared to a massless neutrino is illustrated
in figure 3.3. Because of the sharp increase in the decay rate at lower energies, only
the endpoint region shows a statistically relevant difference.
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Figure 3.3: “The electron energy spectrum of tritium β-decay: (a) complete and (b)
narrow region around endpoint E0. The β-spectrum is shown for neutrino masses
of 0 and 1 eV.” [KATR04]

3.2.2 MAC-E Filter

The ultra-high precision of the KATRIN experiment is reached thanks to the use
of MAC-E filters (Magnetic Adiabatic Collimation combined with an Electrostatic
Filter) [BePT80]. This filter basically acts as a high-energy pass filter. All β-
electrons with an energy that is lower than a variable electrostatic potential are
reflected, the others are measured.
At the WGTS the electrons are emitted with an isotropic momentum. Once they are
in the spectrometer they move along the magnetic field lines in a cyclotron motion.
With the use of a massive magnetic gradient (in the center of the spectrometer
the magnetic field is decreased by several orders of magnitude), their momentum
is aligned, so that all of their energy is converted into the longitudinal motion.
In the middle of the spectrometer the retarding potential reaches its maximum.
Afterwards, all electrons that are not rejected are reaccelerated and guided towards
the detector. The process is illustrated in figure 3.4. [KATR04] [KATR13]

3.3 KATRIN Simulation

A considerable amount of work is dedicated to the simulation of the KATRIN ex-
periment. This is essential to comprehend the different processes and to determine
their influence on the neutrino mass measurements even before they have started.
For this purpose the simulation package Kassiopeia was created. It contains sev-
eral different modules, e.g. for the simulation of the tritium β-decay spectrum or of
electron collisions in the main spectrometer. The former is of relevance to this thesis,
which is why the focus will be on the Source Spectrum Calculation (SSC) package.
Other packages are implemented for particle tracking and detection (KTRACK and
KESS) and the field calculation (KAFCA and KEMFIELD).
For the simulation in SSC the WGTS is described using small volume elements,
called voxels. Each one can be assigned different physical values. This allows taking
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Figure 3.4: This figure shows the general principle of a MAC-E filter. In part (a) the
experimental setup is depicted, while (b) shows “the momentum transformation due
to the adiabatic invariance of the magnetic orbit momentum µ in the inhomogeneous
magnetic field.” [KATR04]
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the prevailing magnetic field or the temperature distribution into account. Scat-
tering of the electrons with tritium molecules is considered, too. To describe the
β-electrons on their further way through the main spectrometer the response and
transmission functions come into play. The former takes care of energy losses and
the latter incorporates the properties of the MAC-E filter that means it provides the
probability with which electrons pass the potential barrier. [Höt12]
SSC also incorporates the description of the β-decay spectrum. It was shown ear-
lier, in section 3.2.1, that, with the use of Fermi’s golden rule (eq. (3.1)), the decay
spectrum can be calculated (eq. 3.2). This function is implemented together with
the following corrections.

• The Fermi function takes care of the Coulomb interactions between the β-
electron e− and the daughter nuclei HeT+. Both are electrically charged and
a non-relativistic approximation for the endpoint region was implemented ac-
cording to [Simp81]:

F (Z,E) =
x

1− e−x
(
a0 + a1 ·

ve
c

)
. (3.3)

Here x = 2πZα
ve
c

, α = 1
137.036

and the empirical values for the constants are

a0 = 1.002037 and a1 = −0.001427.

• In order to take the influence of the emission of virtual and real photons
on the decay spectrum into account, radiative corrections were implemented
according to [ReWu83].

• Another correction accounts for the energy that is lost due to the nuclear
recoil of the HeT+-molecule. The nuclear recoil energy Erec was calculated in
[KATR04] to be

Erec =
p2
rec

2mHeT

=
p2
e

2mHeT

= Ee
me

mHeT

+
E2
e

2mHeT

≈ Ee
me

mHeT

, (3.4)

where p and E denote the momentum and energy of either the electron (index
e) or the daughter nuclei (index rec) and m represents the mass.

• As mentioned in the beginning of chapter 3.2, a part of the energy of the decay
is used for the excitation of the HeT+-molecule. This statistical energy loss
needs to be taken into account, because otherwise it would limit the accuracy
of the m2

ν measurement. This is why an elaborate final state distribution from
[Doss07] was implemented into SSC. The probabilities for the excitations of
the different states2 are depicted in figure 3.5.

These corrections are only valid at the endpoint region of the spectrum, which is
sufficient for the measurement of m2

ν . An extension was carried out in the scope of
this thesis and is presented in chapter 5. [Höt12]

2Rotational, vibrational and electronic excitations are possible because HeT+ is a two-atom
molecule.
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Figure 3.5: The final state distribution shows the probability for the excitation as a
function of the energy. The first big peak is due to rovibrational excitations whereas
the two smaller peaks are due to inelastic scattering.

All electrons above a certain energy level pass the MAC-E filter and are recorded in
the detector. Therefore the consequent spectrum is a differential spectrum.
These spectrum simulations can also be used to simulate a measurement. For this
purpose the expected value is randomly smeared with the use of a Gaussian distri-
bution. Such a simulation is shown in figure 3.6.
Further information about Kassiopeia can be found in [Babu+11], [KATR04] or
the detailed report in [Höt12].

3.4 KATRIN Data Analysis

The Kassiopeia framework is embedded in an even bigger software package, the
KATRIN analysis toolbox Kasper.
This analysis framework is crucial and very important for the determination of the
neutrino mass. As we have seen in figure 3.6, KATRIN does not weight the neutrino
mass like a regular bathroom scale and returns its value right away, but it measures
the number of β-electrons at the detector. The task of the sophisticated analysis is
to extract the value of m2

ν from these results.
Therefore curves with at least four free parameters (endpoint energy E0, neutrino
mass squared m2

ν , signal amplitude Rs, background strength Rb and possibly the
tritium purity and high voltage fluctuations) are plotted to the measured values3.

3Until KATRIN is running and real data is obtained, simulated results can be used to test
different fitting methods.
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Figure 3.6: The simulated KATRIN measurement shows the typical shape of an
integral spectrum.

The curve that describes the measured values the best can be obtained by minimizing
the χ2-function [KATR04],

χ2(E0,m
2
ν , Rs, Rb) =

∑
i

(
Nexp(qUi)−Ntheo(qU,E0,m

2
ν , Rs, Rb)

σtheo(Ui)

)2

. (3.5)

Nexp is the measured count rate, Ntheo the theoretical count rate that is depicted in
eq. (3.6) and σtheo are the theoretical uncertainties.

Ntheo(qU,E0,mν , Rs, Rb) = Rs ·N(qU,E0,Mν) +Rb ·Nb, (3.6)

where Nb denotes the background count rate and N(qU,E0,Mν) the integrated spec-
trum [KATR04].
This process of minimizing the χ2-function to determine the best values of the pa-
rameters is called parameter estimation. The minimization of the χ2-function can
be accomplished by frequentist minimizers like Minuit. Besides the χ2 method
also the maximum likelihood method can be used to estimate the best values of
the parameters. Instead of minimizing the squared sum of the distances from the
fitted curve to the measured one, the maximum likelihood tries to maximize the
value of the likelihood function at the point of the measurement. Both methods are
explained further in section 6.2.
Complementary and additional methods for the analysis and determination of m2

ν

are also presented in chapter 6.
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4. KATRIN and keV Sterile
Neutrinos

In the previous chapter the KATRIN experiment was presented. It was shown how
the mass squared of the electron antineutrino m2

ν can be measured. Additional to
this search KATRIN may offer a chance to verify the existence of another particle
and measure its mass. This particle is the so-called sterile neutrino. It is a serious
dark matter candidate and its detection would cast light upon the question what
the universe really consists of.
The following chapter discusses KATRIN’s abilities towards the detection of this
particle. At first, in section 4.1, the nature of dark matter is discussed. Then, in
section 4.2, the sterile neutrino is introduced. Section 4.3 elaborates on the question
whether KATRIN can measure such a particle. Systematic effects are discussed in
section 4.4 and section 4.5 gives a brief summary.

4.1 Dark Matter

Today we know that baryonic matter only makes up about 4.6 % of the whole uni-
verse. The majority consists of dark (vacuum) energy and dark matter [KKVi02].
This is visualized in figure 4.1. Even though dark matter was already noticed in
1933 by Fritz Zwicky and described as a non-luminous, gravitationally interacting
type of matter, its nature is still unknown. But where did the idea come from that
most of the energy and matter in the universe do not consist of the same baryonic
particles that we know from everyday experience?

4.1.1 Evidences for the Existence of Dark Matter

There were several observations that gave rise to the unique idea of dark matter. In
the following subsection a brief introduction to this topic is given. A more elaborate
discussion took place in [Drex11].
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Figure 4.1: The distribution of matter and energy in today’s universe [Nasa11].

Coma Galaxy Cluster

One of the first observations that indicates an existence of dark matter was per-
formed by Fritz Zwicky. In his paper from 1933 [Zwic33] he describes his observa-
tions of the Coma nebula cluster. Under the assumption that the Coma-system is
in a stationary condition, he applied the virial theorem,

Ēk = −1

2
Ēp, (4.1)

where Ēk is the mean kinetic and Ēp the mean potential energy. With a radius of
about a million light years and an approximate total mass of 8 · 1011 solar masses he
calculated the peculiar velocity of single galaxies. He came up with

√
v̄2 = 80 km

s
,

which was much less than the observed values. He concluded that, in order to
explain the observed velocities, the average density in the Coma system needed to
be at least 400 times larger than the one derived from the observed matter. An
instance that could be explained by the extensive existence of dark matter.

Rotational Velocity of Galaxies

In 1970 the American astronomer Vera Rubin studied the rotation of the Andromeda
Nebula [RuFo70]. Observations of rotation curves of spiral galaxies, like the An-
dromeda Nebula, provide one of the major tools for determining the mass distri-
bution in such galaxies. A rotation curve describes the velocity of the galaxy as a
function of the distance to its center. Similar to the movement of planets in our
solar system, one expects the rotational velocity to decrease as the distance to the
center increases. Vera Rubin, however, discovered that the stars at the periphery of
the galaxy rotated faster than it was expected for the observed mass. Figure 4.2,
that was taken from [CoSa99], illustrates this matter. It shows the rotational curve
of the M33 galaxy. The visible matter, the stellar disk and gas distributions alone,
cannot explain its behavior. With the existence of a dark matter halo, on the other
hand, theory can explain the measurements.
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Figure 4.2: “M33 rotation curve (points) compared with the best fit model (contin-
uous line). Also shown are the halo contribution (dashed-dotted line), the stellar
disk (short dashed line) and the gas contribution (long dashed line)” [CoSa99]

Gravitational Lensing

According to Einstein’s famous formula, E = mc2, mass and energy are propor-
tional [Eins05]. Therefore a mass can be assigned to moving photons. That is why
they are subjected to gravitational interaction. If there is a distribution of matter
between a distant star and an observer, the trajectory of the light will be bent by
the gravitational potential. This phenomenon is called gravitational lensing. One
can distinguish three different types: strong lensing, weak lensing and micro-lensing.
They are distinguished by their different behavior when they interact as a lens be-
tween a distant object (usually a bright star or a galaxy) and the observer.
The influence of strong lensing results in multiple images of galaxies or quasars, arcs
or even Einstein rings.
Weak lensing does not have such a strong effect. It results in a statistical distortion
of remote galaxies, due to the (dark) matter distribution between the galaxies and
the telescope.
Micro lensing is the effect when the luminosity of a stellar objects is increased by a
punctiform lens, like a star or a planet [Drex11].
Scientists have observed a lot of these phenomena, for example the gravitational lens
magnification of the distant cluster Abell 1689 [Tayl+98]. Stars, or other baryonic
objects, often cannot be observed in the areas where the gravitational lenses are
expected. Therefore, these studies indicate a massive existence of dark matter to be
responsible for these effects.
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Figure 4.3: Photomontage of the bullet cluster. The galaxies can be seen in the
background, the dark matter distribution is depicted in blue and the clouds of inter-
stellar gas are colored in hot pink [NAWe06]. Their arrangement is strong indicator
for the existence of dark matter.

Bullet Cluster

As a last example for dark matter evidences the bullet cluster observations need to
be mentioned. It actually consists of two galaxy clusters that collided about 100
million years ago. According to [Clow+06] this merger enables a direct detection of
dark matter with the use of gravitational lensing. As illustrated in figure 4.3 the
different components of the bullet cluster can be observed separately: The galaxies
are observed with the Magellan and Hubble space telescopes in the wavelength of
visible light. The interstellar plasma can be detected with x-ray observations using
the Chandra-telescope. Finally the distribution of matter is visualized with a statis-
tical analysis of gravitational lensing (as described in the previous subsection). It is
evident that the interstellar plasma interacted heavily during the collision and got
separated from the rest. On the other hand the galaxies themselves passed through
each other almost without any interaction, due to the vast distances between them.
Also, the dark matter shows no interaction because it moves without dissipation.
This spatial segregation of baryonic matter and dark matter is one of the biggest
evidences for the existence of a substance that is called dark matter. But this leaves
one question still unanswered: what does this mysterious type of matter consist of?
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4.1.2 Cold Dark Matter

Even though the true nature of dark matter is still unknown, there are a lot of spec-
ulations about its composition. The possible dark matter candidates can be roughly
divided into three categories: cold dark matter (CDM), hot dark matter (HDM) and
warm dark matter (WDM). In this and the following two subsections these different
types are discussed.
Cold dark matter is the label for all possible dark matter particles with a mass in the
area of 100 GeV. The existence of cold dark matter would explain different things
nicely, for example the formation of large scale structures. However, there are several
problems that contradict the hypothesis that dark matter is composed of these slow
moving, massive particles. For one thing, the corresponding free-streaming length
lfs for particles with a mass of about 100 GeV is lfs ≈ 0.1 pc. The free-streaming
length is the range that dark matter particles can travel freely. Therefore it is the
connection between the scale of formed dark matter structures in the universe and
the mass of these particles [KoTu94]. It can be expected that any structure smaller
than lfs is washed out by free-streaming [dVeg+11]. A free-streaming length in the
area of 0.1 pc means that only smaller structures are erased, but structures in the
size of 0.1 pc or bigger exist. But this is not what astronomers observe, since the
smallest dark matter structures are in the area of 100 kpc1 [dVeg+11].
Furthermore, CDM models for the surface density in galaxies yield a problem. Sim-
ulations have shown that the values obtained with CDM are about three orders of
magnitude higher than the observations [Hoff+07].
Still another astronomical observation questions the existence of CDM. Simulations
that were carried out under the assumption that CDM is the dominant form of dark
matter indicate that dark matter halos have cusped profiles. However, astronomical
observations show a different result: dark matter halos have cored profiles [dVSS10].
The distinction is visualized in figure 4.4. These reasons are already sufficient enough
to disregard CDM alone as a serious candidate for dark matter, but for the sake of
completeness another problem is listed: the satellite anomaly. Only about a third
of the small dwarf galaxies that are predicted in simulations are actually observed
in the milky way [Klyp+99].

4.1.3 Hot Dark Matter

Light particles - with a mass in the eV scale - are called hot dark matter. Because of
their small mass these particles travel almost at the speed of light. Often discussed
candidates for HDM particles are neutrinos. However, the combined mass of all
active neutrinos is too small to explain the whole dark matter phenomenon.
Another argument against the hypothesis that dark matter only consists of HDM is
the free streaming length. For particles in the eV range the free-streaming length
is lfs ≈ 1 Mpc. That means one should not be able to observe smaller structures.
Astronomical observations have shown that this is not the case.
There would also be consequences for the way structure has formed in the universe.
The majority of dark matter being HDM would result in a top-down-scenario in
which smaller structures like galaxies and single stars formed after larger structures

1Other structures or stellar objects that are smaller than 100 kpc are made of baryons.
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Figure 4.4: Illustration of cusped (red) and cored (green) profiles in dark matter
halos [Bart12]. Astronomical observations indicate that dark matter halos have
cored profiles, whereas CDM simulations lead to cusped profiles.

like galaxy clusters. However, age determination has shown that some galaxies are
much older than the clusters they make up [dVeg+11] [Dode03]. These arguments
show that, from a cosmological perspective, HDM alone needs to be discarded as
well.
Mixed scenarios of both, cold and hot dark matter, as described in [Tran94], are not
excluded by these observations

4.1.4 Warm Dark Matter

Warm dark matter is the term for particles with properties in between those of hot
and cold dark matter. The mass of these particles lies between 1 keV and 10 keV.
The corresponding free-streaming length is about lfs ≈ 100 kpc. Structures in this
area exist, so WDM agrees well with the astronomical observations. Models that
are calculated with warm dark matter predict cored profiles (see subsection 4.1.2)
in agreement with the observations. Also, the right surface density of dark matter
dominated galaxies can be reproduced with WDM simulations. Additionally, radio
observations are in agreement with warm dark matter [dVeg+11].
That means in all the areas, where HDM and CDM alone cannot explain the as-
tronomical observations, WDM succeeds. Therefore it is very reasonable to look
for possible dark matter candidates in the mass range between 1 keV and 10 keV.
Among others, these candidates are gravitinos, the light neutralino and majorons.
According to [dVeg+11] the most promising candidate is the sterile neutrino.

4.2 Sterile Neutrinos

Sterile neutrinos are possible candidates for a dark matter particle. Opposed to
regular neutrinos, they are right handed and do not take part in weak interactions.
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Figure 4.5: Constraints on the mass and the mixing angle of keV sterile neutrinos
according to Dr. F. Bezrukov [Bezr11]. The forbidden region from the Lyman-α
bound is depicted in blue, whereas the constraints from X-ray observations of the
sterile neutrino decay are depicted in red. The latter depend on the mixing angle,
which is plotted on the y-axis.

Due to their mass, however, they are subjected to gravity. They are singlets of
color, weak SU(2) and weak hypercharge and their electric charge and isospin are
zero. The lack of weak interactions makes their detection extremely difficult and
gave them the name sterile neutrinos. One can think of light sterile neutrinos in the
range of eV2, or heavier ones in the range of keV. The implications of the former on
the KATRIN experiment were discussed in a paper by Joseph Formaggio and John
Barrett [FoBa11]. The latter are candidates for warm dark matter and are dealt
with in chapters 4 and 5 of this diploma thesis.
The possible mass range of WDM sterile neutrinos and the allowed mixing angles can
be narrowed down. For one thing there are restrictions from the Lyman-α bound.
These exclude sterile neutrino masses below 1.6 keV [Bezr11]. The upper limit is
given by X-ray constraints and is dependent on the mixing angle (see figure 4.5).
These constraints are due to the fact that X-ray observations should be compatible
with the model of the decay of the sterile neutrino:

νsterile → νactive + γ. (4.2)

The observed quantity of X-rays ought to be in correspondence with the sterile neu-
trino lifetime in this radiative decay [Bezr11]. Another important requirement is met
by sterile neutrinos. They only interact so weakly that they have not been discovered

2As we have seen in section 2.6.
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so far. This sounds like a handicap rather than an advantage, but it is important in-
sofar that only particles, that are to date unknown, are possible candidates for dark
matter – which has not been discovered either. Regular, weak interacting particles
in the mass range described by figure 4.5 would have been detected already.
But where does the idea come from that there are more than the known neutrinos?
From a particle-physicist’s point of view an obvious analogy comes into mind: the
existence of right and left handed quarks, whereas there are only right handed neutri-
nos. This gave birth to the idea that the same symmetry can be found in neutrinos.
In [dVeg+11] this argument is described as “quark-lepton similarity”. [dVSS10]

4.3 Can KATRIN Measure keV Sterile Neutri-

nos?

In section 4.2 it was mentioned that sterile neutrinos are extremely difficult to detect.
There is, however, a property that gives decay experiments like MARE or KATRIN
a chance to verify their existence: sterile neutrinos mix with active neutrinos. This
is similar to the e−-, µ− and τ− neutrino oscillations (see section 2.3) and it is
described by the before-mentioned mixing angle. The neutrino mass matrix is given
in [dVeg+11], as (

ν̄L ν̄R
)( 0 mD

mD M

)(
νL
νR

)
, (4.3)

where the indices L and R describe left- respectively right-handed neutrinos, M is
the mass of νR and mD = yv (y is the Yukawa coupling and v = 174 GeV). The

eigenvalue for the mass of the active neutrino in this model is mactive =
m2
D

M
and the

sterile neutrino mass is msterile = M . Using this mechanism with reasonable values
for the masses it is possible to reproduce the observations3. Different models are
discussed in [BeHL09].
If there are sterile neutrinos in the range of keV, then, thanks to their mixing with
active neutrinos, there need to be detectable traces in β-decay experiments. The
sterile neutrinos that are created in the decay would carry away the energy needed
to make up their mass and momentum. This leads to a kink in the β-spectrum and
should therefore be visible in decay experiments like MARE and KATRIN. Figure
4.6 shows such a kink for an excessively large mixing angle. However, due to the
smallness of the mixing angle, which could be in the area of 10−4 or even smaller,
sterile neutrinos are very difficult to detect.
The tritium decay observed in the KATRIN experiment has an endpoint energy of
about E0 ≈ 18.6 keV. This is significantly higher than the decay energy of MARE,
which is about 2.5 keV, and covers most of the area in which a sterile neutrino is
expected (see figure 4.5). In the first run of KATRIN only the area near the endpoint
E0 is observed (see chapter 3). In a second run, however, it might be possible to
extend KATRIN’s range to map the whole spectrum. Then KATRIN could be able
to measure a kink that indicates the existence of the new particle. In order for such
a task to be successful it is necessary to know the shape of the tritium β-spectrum

3M ≈ 1 keV and mD ≈ 0.1 keV yields a mixing angle of about 10−4, which is in concord with
the amount of observed dark matter in the universe [dVeg+11].
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Figure 4.6: Visualization of a kink in the tritium decay spectrum that is caused by
the existence of a sterile neutrino. The mass of the sterile neutrino is Ms = 10 keV
and the mixing angle is Θ = 20◦. The endpoint region, which is important for the
standard KATRIN measurements, is also separately depicted [Mert13].

as accurately as possible4. Therefore calculations for the full spectrum have been
conducted and can be found in chapter 5. [EsPe12] [Mert13]

4.4 Influence of Systematics

We have seen that there should be a kink in the tritium β-decay spectrum, provided
that sterile neutrinos exist, their mass lies within the reach of KATRIN and the
mixing angle is not too small. But can one be certain that such a kink is really due
to the existence of sterile neutrinos and not owed to some other circumstances? A
quick look at the contemplable systematic effects will cast light upon this question.
One of these effects is the influence of electrons that are back-scattered from the
detector. Another systematic effect is the stability of the tritium source and its
composition. These effects, just like possible variations in the high voltage potential,
can have an effect on the measured tritium spectrum. Nevertheless, none of these
effects should lead to a knee in the spectrum. The same is true for the corrections
for the tritium β-spectrum that are presented in chapter 5. Therefore it is very likely
that the origin of a kink in the measured spectrum is a new particle, most likely the
sterile neutrino [Mert13].

4We do not want a fiasco, like the “detection” of the 17 keV neutrino by J.J.Simpson in 1985,
to happen again [Simp85].
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4.5 Summary

In this chapter it was shown that there are serious evidences for the existence of
a type of matter that is not baryonic, but nevertheless interacts gravitationally. If
there is one particle that makes up the majority of this dark matter, then it is
very likely that this particle is in the keV-scale. Because the movements of such
a particle are neither very fast (such particles are called hot dark matter), nor
very slow (they are called cold dark matter), this type of matter is named warm
dark matter. As was shown in subsection 4.1.4, this type of dark matter is in nice
agreement with astronomical observations. A candidate for a warm dark matter
particle is the hypothetical keV sterile neutrino. It only interacts gravitationally
and does not take part in weak interactions. Thanks to its mixing with light active
neutrinos, it could leave determinable traces, for example a kink in the tritium β-
decay spectrum. Provided the tritium spectrum is known well, it is possible that
KATRIN is sensible enough to look for such a knee. The necessary calculations for
a complete β-spectrum are carried out in the following chapter 5.
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In order to be able to determine a small kink in the spectrum, we need to know
the shape of the spectrum very well. The present-day KATRIN experiment is only
interested in the region near the endpoint. That is why the standard data analysis
uses calculations and corrections that are correct in the endpoint region and not
over the whole range of the spectrum. Therefore further calculations are needed.
It was shown in section 3.2.1 how the basic shape of the tritium β-decay spectrum
is calculated. There are several physical effects that have an influence on its form
and need to be calculated separately. The dominant effects are Coulomb and Fermi
corrections, radiative corrections and the effect of electron excitations in the final
state of the daughter nuclei HeT+. These are discussed in sections 5.1, 5.2 and 5.3.
Further corrections is dealt with in section 5.4. Comments on the implementation of
the corrections can be found in section 5.5. Finally, section 5.6 compares the results
and gives a summary.

5.1 Fermi Corrections

The tritium β-decay is described by the following nuclear equation:

3
1T→3

2 He+ + e− + ν̄e. (5.1)

It is a three-body-decay because there are three decay products, an electron, an
electron antineutrino and a helium-3 isotope. Because the electron and the helium
isotope are both electrically charged, they interact electromagnetically, while the
electron moves in the field of daughter nuclei. This interaction is described with the
Fermi function.
The implementation of the full Fermi function (which includes all Coulomb correc-
tions) is therefore important in order to take the electromagnetic interaction between
the electron and the daughter nuclei into account. In the case of KATRIN the daugh-
ter nuclei is generally not 3He+, but molecular HeT+ because the starting product
is mainly molecular T2.1

1That means the nuclear equation for KATRIN is T2 → 3HeT+ + e− + ν̄e.
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There is a variety of papers dealing with the general topic. However, none of them
give the full Fermi function for the tritium decay. Luckily, it is possible to look at
the neutron β-decay and extend these considerations.
In [Wilk82] D. Wilkinson deals explicitly with this decay. He states the Fermi func-
tion that can be calculated with the use of the Dirac equation for an electron moving
under the influence of a spatially finite nuclear charge distribution.
The Fermi function is quite long and, especially because of the complex Γ(a)-
function, intricate to calculate. That is why different approximations (for example
from [Glü93]) were implemented into the KATRIN analysis software at first. How-
ever, it was not possible to obtain a sufficient accuracy, which is why the full Fermi
function (eq. (5.2)) is now used. The equation is taken from [Wilk82] and is stated
in natural units (~ = me = c = 1):

F (Z,E) = 2(1 + γ)(2pR)−2(1−γ)|Γ(γ + iy)|2[Γ(2γ + 1)]−2eπy. (5.2)

The following notations were used [Wilk82]:

• Z is the atomic number of the daughter nuclei (in our case Z = 2),

• E is the total energy of the electron, with E0 being the endpoint energy,

• γ = [1− (αZ)2]
1
2 ,

• α = e2

~c = 1
137.036

,

• p = (E2 − 1)
1
2 ,

• R = nuclearradius
nucleonradius

,

• y = αZE
p

.

• The Γ(a)-function was introduced by L. Euler as [Domb06]

Γ(a) =

∫ ∞
0

xa−1e−xdx, with a > 0. (5.3)

For the Fermi function the complex version of this equation is needed. C. Gauß
introduced this convoluted formula. It is discussed in [Domb06] and [Arti64]
and tables for the values of the Γ(a)-function with complex arguments are
given in [oSta54]. For the implementation into Kasper the GNU scientific
library was used.

The influence of this complete Fermi function on the shape of the decay spectrum
can be seen in figure 5.1. Its impact is massive and raises the height of the spectrum
at the maximum by about 40 %. Also, the rate at lower energies is increased stronger
than at higher energy values.
Details on the implementation of these corrections are provided in section 5.5 and
in appendix A.
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Figure 5.1: The Fermi corrections have a huge influence on the spectrum. The
spectrum without corrections is depicted in black, with the corrections the spectrum
is colored green. It is raised significantly. Also, the maximum is shifted towards lower
energies. The decay rate on the y-axis is in arbitrary units. During this chapter the
same presumptions were used for all spectrum calculations, so that the presented
figures can be compared easily.
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5.2 Radiative Corrections

During the tritium β-decay the emission of virtual and real photons can have an
influence on the energy of the β-electron and therefore on the shape of the decay
spectrum. This circumstance can be described by implementing terms for the ra-
diative corrections that characterize these photon emissions [Step10].
For the standard KATRIN experiment the calculations by W.W.Repko and C.Wu
(as given in [ReWu83]) are used [Höt09]. For the simulation of the whole spectrum,
these have to be replaced with calculations that are valid over its whole range. A.
Sirlin conducted these calculations in 1967 for β-decays in general [Sirl67]. In the
following they have been adapted for the tritium β-decay.
Eq. (5.4) gives these model independent radiative corrections that, for the implemen-
tation, have to be multiplied with the formula for the decay spectrum. As the equa-
tion is quite elaborate it is divided into several parts. These are given in eq. (5.5),
eq. (5.6), eq. (5.7) and eq. (5.8) and are stated in natural units (~ = me = c = 1)
[Glü93]:

Correction factor = 1 + 0.01 · re(E), (5.4)

re(E) = 100
α

2π
g(E), (5.5)

g(E) = 3 ln

(
mf

me−

)
− 3

4

+ 4

(
N

β
− 1

)[
E0 − Ekin

3Ekin

− 3

2
+ ln

[
2(E0 − Ekin)

me−

]]
+

4

β
L

(
2β

1 + β

)
+
N

β

[
2(1 + β2) +

(E0 − Ekin)2

6E2
kin

− 4N

]
,

(5.6)

N =
1

2
ln

(
1 + β

1− β

)
, (5.7)

L(z) =

∫ z

0

ln |1− t|
t

dt. (5.8)

The following abbreviations were used:

• α = e2

~c = 1
137.036

,

• E0 is the electron endpoint energy,

• Ekin is the kinetic energy of the electron e−,

• mf , mi are the masses of the final respectively the initial state of the decay,

• β is calculated as follows: β =
pe−

Ekin+me−
, with pe− being the electron momen-

tum and
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Figure 5.2: The Influence of the radiative corrections is not as massive as those due
to the complete Fermi function, but it is still very apparent. The spectrum without
corrections is depicted in black, with the corrections in blue.

• L(z), finally, is the Spence function [Muta10].

The influence of these radiative corrections is shown in figure 5.2. The spectrum is
raised distinctly compared to a curve that is calculated without any corrections. A
comparison of the different corrections can be found in section 5.6.

Further details on the implementation are given in section 5.5 and in appendix A.

5.3 Full Molecular Final State Distribution

As discussed in chapter 3.3, the final state distribution takes the excitation of the
daughter ion after the decay into account. It gives a total transition probability into
the different excited states. The molecule 3HeT+ consists of two atoms and as such
has not only electronic excited states, but additionally rotational and vibrational
excitations are possible. Its shape was shown in figure 3.5.
Like the other corrections for the KATRIN experiment, the final state energies were
only calculated in the final region of the electron spectrum. That means excited
states with energies higher than 240 eV were not taken into account. For the descrip-
tion of the full spectrum, however, it is important to have calculations that extend
over the whole spectrum. Therefore additional corrections were implemented based
on papers by Saenz et al. [SaFr97] [SaJF00].
For their calculations they used the sudden approximation and discarded the ef-
fect of electron excitations due to recoil, as well as the influence of the coupling of
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electronic and nuclear motions. Nevertheless, a myriad of other factors were taken
into account, like the electronic wave functions, Born-Oppenheimer potential curves,
rovibrational wave functions and the relativistic recoil2.
The final state distribution can be divided into two parts. The part below the
dissociation threshold of HeT+ is discrete, whereas the one above is continuous.
The transition probabilities above 240 eV can be approximated with the following
equation [SaJF00]:

P (E) ≈ 14.7

(
8e

−(4 arctanκ)
κ√

1− e−4π
κ (1 + κ2)2

)2
dE

eV
, (5.9)

with κ =
√

E−45 eV
13.606 eV

.

For the calculation of this tail of the final state distribution, the β-electron energy
was set to a fixed value in the endpoint region of the spectrum (at about 18 keV).
If the β-electron has an energy in the middle of the spectrum - say, for example,
9 keV - then, strictly speaking, these calculations may not be valid. It is possible
that the final state distribution is dependent on this β-energy and therefore different
from what is predicted by eq. (5.9). However, according to Prof. J. Tennyson, it is
very complicated to carry out these new calculations and presumably a task for a
whole dissertation. This is why in the course of this thesis, only the already existing
additions were implemented.
Their influence can be observed by comparing figures 5.3 and 5.4. In the former the
sudden break at 240 eV is distinct. In figure 5.4 this abrupt end is replaced with a
smooth exponential drop. Compared to the height of the final state distribution up
to this point, that is occasionally in the area of percent, this small atomic tail, with
a maximum height of 10−3 percent, is not likely to have a huge impact.
Figure 5.5 confirms this assumption. Opposed to the corrections presented in the
previous two sections, the full final state distribution has a very small influence on
the tritium β-decay spectrum. The height of the curve is only lifted slightly, but for
the greater part both lines overlap. By zooming into the region, where the spectrum
reaches its maximum, the distinction becomes obvious. This is depicted in figure
5.6.
The implementation of the extension to the final state distribution is discussed in
section 5.5 and more explicitly in appendix A.

5.4 Other Corrections

The three corrections, discussed in the previous sections, have the largest influence
on the shape of the spectrum. For the sake of completeness some other effects shall
be mentioned, even though their influence is expected to be very small.
For one thing this is the influence of forbidden transitions that is not accounted for
so far. The quark-substructure of the daughter nuclei is another effect that might
have a small influence. Nevertheless, it is unknown how to deal with this effect
[Wilk82]. Some other corrections deal with the way the β-spectrum is calculated in

2For a very detailed description please have a look at [SaFr97] [SaJF00].
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Figure 5.3: The incomplete corrections for the final state excitation spectrum of
HeT+ stop suddenly at 240 eV. Higher excitations are not taken into account - and
for the standard version of the KATRIN experiment do not need to be.
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Figure 5.4: The corrections for the final state excitation spectrum of HeT+ for the
whole spectrum. The abrupt stop at 240 eV is replaced with the calculated tail that
takes higher energy states into account.
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Figure 5.5: The spectrum is plotted with all previous corrections and with the
incomplete (black line) and the complete (dashed blue line) final state distribution.
The difference between both curves is very little and on this scale hardly visible.
Therefore figure 5.6 shows a magnification.
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Figure 5.6: This figure shows a magnification of the spectrum, which is plotted
with all previous corrections and with the incomplete (black line) and the complete
(dashed blue line) final state distribution. Only the area around the maximum of
the spectrum is shown. The corrections lift the spectrum slightly.
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the first place. The β-decay can be described using the coupling constants gV and
gA for axial and vector weak-coupling. Interference terms, for example gAgV , and
terms that involve only one of the currents, like gV gWM (gWM describes the weak
magnetism) also have a small influence. However, they are not implemented in the
current calculations.
In this thesis only corrections that have a significant influence on the spectrum are
regarded. This is why all miniscule effects have been discarded. However, if the
mixing angle, of the sterile neutrino with the active neutrinos, turns out to be very
small - e.g. in the area of 10−7, as some cosmological observations suggest [RuIv12]
- it might be important to implement these other corrections, as well.
Most of these additional effects are discussed in greater detail in [Wilk82].

5.5 Implementation

For the current version of the KATRIN experiment there are already Fermi and
radiative corrections implemented into the simulation software3. These corrections
are only valid near the final point of the decay spectrum, which is everything that is
needed for the standard version of KATRIN. The corrections that were presented in
this chapter are valid over the whole range of the spectrum. They are not compatible
with the already implemented corrections. That means there needs to be an option
to disable and substitute them when a whole spectrum is calculated. This task
was accomplished with the program written for this diploma thesis. The user of
the program can choose whether he wants to use the final region corrections or
the ones for a complete spectrum. This decision depends on the task, whether a
measurement for regular, active neutrinos or a full-range measurement for a keV
sterile neutrino is conducted. The whole code was written in C++. Further details
on the implementation and the program are given in appendix A.

5.6 Summary and Results

In this chapter the three corrections with the highest influence on the tritium β-decay
spectrum were presented. In figure 5.7 the influence of the combined corrections is
depicted. The largest change is due to Fermi corrections. Radiative corrections are
quite significant as well and cause a further enhancement of the spectrum. The
influence of the implemented tail for the final state distribution almost vanishes
compared to these corrections.
With the help of this complete decay spectrum a future version of the KATRIN
experiment hopefully has the chance to search for sterile neutrinos.

3See chapter 3 for an overview over the KATRIN simulation and data analysis.
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Figure 5.7: Combinations of the implemented corrections for the full spectrum. The
influence of the final state distribution far from the final point is so small that it
cannot be seen next to the other corrections.

Another interesting result is the comparison of the new and the “old” corrections4.
Figure 5.8 makes their differences apparent. The fact that they do not lie on top
of each other, but rather far apart, emphasizes the importance of the newly imple-
mented corrections. As expected, one cannot obtain a valid complete spectrum with
the “old” corrections.
The difference of both spectra is plotted in figure 5.9. It shows that the absolute
difference between both calculations is relatively large at low energies and much
smaller at the endpoint region, where they are both supposed to be valid.

The implementation of the different corrections for the tritium β-decay spectrum
gives us another interesting opportunity. We can test the fitting routines imple-
mented so far and thereby evaluate these programs. For the data analysis of a
simulated KATRIN measurement usually the spectrum is fitted with the same as-
sumptions that are used to simulate the measurement. Now it is possible to simulate
the decay spectrum with all of the new corrections activated. That means the spec-
trum is computed with the sophisticated and intricate corrections presented in this
chapter. This spectrum is then used to simulate a measurement. The simulated
electron rates are then fitted without taking the new corrections into account - only

4The corrections that are used for the standard version of the KATRIN experiment are older
than the corrections that were implemented to simulate the whole spectrum shape. That is why
they are called “old” within the scope of this thesis. This does not mean that they are outdated -
they are simply not valid anywhere but in the final region of the spectrum. But they can still be
used for the standard KATRIN m2

ν measurements. The quotation marks are used to emphasize
this fact.
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Figure 5.8: The “old” corrections that were implemented to approximate the shape
at the final region also deliver a result for the full spectrum. These corrections are
depicted in black. The new corrections that are valid over the whole range of the
spectrum are depicted in blue. A significant difference is visible.
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Figure 5.9: The spectrum that was calculated with the“old”corrections is subtracted
from the spectrum with the corrections for the full range. At the area of the endpoint
the difference becomes very small. The difference was calculated in the same units
used in figure 5.8.
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Figure 5.10: The measurement was simulated with the new corrections, while the fit
was performed with the “old” corrections. The result for the neutrino mass squared
is m2

ν = −3.2 · 10−4. This only a very small shift and in nice correspondence with
the input value, which was zero.

the simpler approximations are used. This is a measure to benchmark the fit’s abil-
ities to deal with measurements that are not like what we expect them to be.
This is important because statistical effects and fluctuations may be accountable for
such little differences in a real KATRIN measurement. The result is very satisfying
and can be seen in figure 5.10. The value of the neutrino mass squared m2

ν was
evaluated and plotted. Within the scope of this simulation, the result is correct and
shows how well the KATRIN data analysis already works. Also, it justifies the use
of the simpler and less computing-time consuming approximations for the standard
version of the KATRIN experiment.

As we have seen, the simulation for the KATRIN experiments works well - for the
standard neutrino mass measurements as well as for the simulation of β-spectra for
the search for sterile neutrinos. But what about the data analysis? All questions
about this topic will be answered in the following chapter.



6. Data Analysis for KATRIN

The standard procedure of KATRIN data analysis was presented in chapter 3.4.
In order to determine our parameter of interest, the mass squared of the electron
antineutrino m2

ν , an expected spectrum needs to be fitted to the measured electron
count rates (see figure 3.6). The exemplary way to do this is, as we have seen, a
χ2-fit using the minimizing routines that are implemented in Root: Minuit and its
subroutines Minimize and Minos [CERN13]. These algorithms, however, may be
restricted by limitations if we implement more free parameters, the mass of a sterile
neutrino and its mixing angle, for example. These lead to a more complicated like-
lihood function and the line-search-algorithm or minimizers like Migrad or Simplex
could fail or get stuck in local minima.
Therefore one needs to find an algorithm that can handle both, multiple parameters
as well as more complicated functions to minimize. A powerful tool to tackle these
tasks is represented by Markov Chain Monte Carlo methods. These methods are
discussed in the following.
Markov Chain Monte Carlo is a method of Bayesian inference. This is opposed to
the frequentist approach that is used in Minuit. In section 6.1, both ways of think-
ing are summarized to make their distinctions apparent.
In section 6.2, the Maximum Likelihood method is depicted as a more general
method than the χ2-minimization routine.
After that, the fundamental principle that underlies all implemented Markov Chain
Monte Carlo methods is presented in 6.3: the Metropolis-Hastings algorithm. This
algorithm is the basis for the three specific methods, Markov Chain Monte Carlo
with Gaussian transition kernel, Hamiltonian Monte Carlo and Riemannian Mani-
fold Hamiltonian Monte Carlo, which are discussed in sections 6.4, 6.5, 6.6.
Finally, in 6.7, the three algorithms are compared and their advantages and short-
comings are assessed.
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6.1 Frequentist and Bayesian Probability

There are two major ways to evaluate results of experiments in statistics: either with
frequentist or Bayesian probability. The frequentist way of thinking is the classical
approach. With the use of this technique the probability of a certain event is either
determined by the symmetry of a problem or by a limit value consideration. To
exemplify this, let us assume we perform an experiment whose outcome can either
be A or B (B 6= A). Then the probability P (A) for event A happening, is given by
eq. (6.1), where n is the number of times the experiment is repeated and nA is how
often event A was the outcome

P (A) = lim
n→∞

nA
n
. (6.1)

For large numbers of n the value of the fraction converges towards the true value of
the probability, which is defined as relative frequency. This is pretty straightforward
and can be easily visualized for simple experiments, like the throwing of a dice. Ac-
cording to [Jame08] one does not even need to let n go towards ∞. It is sufficient
to have an experiment that can be repeated often enough to achieve the required
accuracy. But this is also one of the shortcomings of this method because it does not
state what happens if the experiment cannot be repeated, e.g. if one is interested in
the probability that Germany wins the soccer world cup in 2014. There is only one
such event in that year and the next time it occurs the underlying circumstances
will be very different.
Questions like this one can only be handled with Bayesian probability. By imple-
menting prior information (or just called“prior”) one can obtain the probability of an
event as a degree of personal belief. At first sight this does not sound very scientific
because the result may change with the input of different knowledge, but it actually
suffices the Kolmogorov axioms. These axioms have been stated by A. Kolmogorov
in 1933 and present the basis for every theory that handles statistics properly1. In
order to understand Bayesian statistics one has to look at Bayes’ theorem (eq. (6.2)),
which is named after the English minister and mathematician Thomas Bayes,

P (θi|x) =
P (x|θi) · P (θi)

P (x)
. (6.2)

This universal formula can be clarified with an easy example: If someone measures
the neutrino mass m2

ν , he obtains a value x, which may or may not be equal to
the true value of the neutrino mass, for which we have different hypotheses θi. On
the left side of eq. (6.2) we find the posterior probability P (θi|x) and on the right
side there is the likelihood P (x|θi) together with the prior probability P (θi) and a
normalizing constant P (x).

• The posterior P (θi|x) gives the probability that hypothesis θi is correct for the
measured data - i.e. that the true value for the neutrino mass is equal to θi.

1The axioms and the quantitative rules arising from them are discussed in great detail in the
second chapter and appendix A of [Jayn12].
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• The likelihood probability P (x|θi) works the other way around. It basically
gives the probability that x is measured under the assumption that θi is the
true parameter for m2

ν . This parameter is known.

• P (θi) is called the prior probability and gives the initial degree of belief in the
hypothesis. In this parameter everything is included that is known about the
measured value before the experiment. In the case of the KATRIN experi-
ment the prior could be a Heaviside step function, hereby excluding negative,
unphysical neutrino mass values.

• P (x) is a normalization constant.

The posterior probability P (θi|x) is what Bayesians are really interested in. It repre-
sents another distinction to the frequentist approach. With the use of the latter, one
only obtains information about what happens if the experiment is repeated multiple
times. For example, if one conducts an experiment to determine the parameter x
one hundred times and defines a 1σ confidence belt for each one, then 68 of these
100 experiments will deliver a confidence interval that contains the true value. But
one does not get any information about the true value itself. This is okay and
not wanted differently by frequentists, as everything else requires prior information.
Bayes’ methods on the other hand will give a probability for the hypothesis of the
true value, according to eq. (6.2). The problem is that it is generally not possible
to calculate this posterior distribution. Luckily the posterior can be obtained in an-
other way: through sampling of the KATRIN likelihood. What this means and how
it is done will be described in section 6.3. But before we have a look at the specifics,
it is important that we remind ourselves of the ways KATRIN data analysis is done
in general and clarify some fundamental terms. This discussion takes place in the
next section2.

6.2 Data Analysis with Maximum Likelihood

The fit that is performed to the measured electron rate in the KATRIN experiment
yields the parameters of interest, like the neutrino mass m2

ν . In order to achieve a
good result for these parameters the fitted spectrum needs to describe the measured
values to a high degree. There are two general methods to achieve this. One way is
the χ2- or least-squares-method. A program, which uses this approach, tries to min-
imize the sum of the squares of the distances (red) between the fitted curve (black)
and the measured values (blue), as it is exemplified in figure 6.1. If it performs a
lousy fit, the value for χ2 is big. If, however, the curve is fitted well to the measured
points, then the distances are small and we obtain a small value for χ2. In order to
get a good result one needs to minimize the value of χ2 by adjusting the fitted curve
in the multivariate parameter space. This method works very well for the standard
frequentist implementations in KATRIN.
The Markov Chain Monte Carlo methods rely on another approach: the maximum

2For more information on Bayesian and frequentist probability see, i.e. [Jame08].
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Figure 6.1: A curve (black) is fitted to measured points (blue) by minimizing the
sum of the square of the differences (red).

likelihood fit.3 This method utilizes the likelihood that was introduced in the pre-
vious section. Following [Jame08] the likelihood can be written as

L(~x|θ) =
N∏
i=1

f(xi, θ), (6.3)

where xi are the observed values, θ is the parameter whose true value θ0 we are inter-
ested in and f(xi, θ) is the probability density function of the value xi. Its differences
to the least-squares fit is illustrated in figure 6.2. In this graphic a measurement
at x = 2 is illustrated by a thick red line and three different Gaussian distributions
(green, blue and purple) represent different probability density functions, that are
to be evaluated. One is interested to know which of these distributions describes the
measurement the best. The least squares method compares the distance (dashed or-
ange lines) between the measurement and the expectation value of the fitted curves.
The blue and green curve have the same distance ∆ = 2 from the measured value,
whereas the purple distribution has a better value of ∆ = 1. The maximum likeli-
hood method on the other hand bears a different result. Here not the distance is
minimized but the height of the probability density function is maximized. This is
elucidated by the vertical orange dotted lines on the right of figure 6.2. The purple
distribution is still the best fit for our measurement, as it has the highest value at
x = 2. But now there is a difference between the two bell curves centered at x = 0.
The green one has a bigger tail and therefore a higher value at the point of the
measurement. This makes it a better fit than the blue curve. If the measurement
had revealed a value x ≥ 3, then the green curve would have been the best fit of all.
We see that there is generally a difference between the χ2- and the maximum like-
lihood method. For large numbers, however, they can even become the same. The
KATRIN likelihood for example is a product of probability density functions (com-
pare eq. (6.3)) that are Poisson distributions. These can be approximated with
Gaussian distributions for large numbers and therefore make the likelihood method

3The maximum likelihood method is not limited to the use in Bayesian inference. It can also
be utilized in frequentist techniques, i.e. for the Feldman-Cousins Unified Approach implemented
for KATRIN in [Höt12].
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Figure 6.2: Three Gaussian likelihoods are plotted to match a measurement. The
orange lines symbolize the difference between the χ2 (dashed) and the maximum
likelihood (dotted) method.

equal to the one of least squares.
For the further analysis it is now important to find the maximum of the likelihood.
To do so, the derivative, which is not trivial for functions that consist of a lot of
products, is needed. In order to solve this problem, the fact, that the logarithm is a
monotone function, can be used. Therefore

lnL(~x|θ) =
N∑
i=1

ln f(xi, θ) (6.4)

has the same extreme values as eq. (6.3). For historical reasons and due to the
fact that there are more efficient minimizers than maximizers eq. (6.4) is usually
multiplied by −1. Because of this the full name is negative log likelihood function.
This minimization can now be achieved using Markov Chain Monte Carlo methods
whose basics are shown in the next section.

Please keep in mind that this section only offers a brief introduction into the workings
of maximum likelihood. For further reading I recommend [Barl89] or the slides of
Prof. Dr. G. Quast’s lecture on data analysis that can be found in [Quas11].

6.3 Underlying Principle

Markov Chain Monte Carlo methods present an excellent way to
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Figure 6.3: Image of a one dimensional KATRIN likelihood [Höt12]. The blue dots
in the second graphic represent a location that has been sampled by the algorithm.

• minimize the logarithm of the likelihood function and reveal the most likely
value of the parameters of interest,

• sample the likelihood distribution in order to obtain a sample of the posterior
distribution. Sampling means in this context that the algorithm “walks” along
the likelihood distribution. The states it visits are recorded in a histogram that,
after a sufficient period of time, displays a sample of the target distribution.
In order to do a good job, the time the sampler spends at a certain region
needs to be proportional to the posterior density at the same region.

The latter offers a variety of advantages. Besides the obvious Bayesian posterior
probability, we get a visualization of parameter correlations and we obtain error
estimates - even if the parameters are not Gaussian - as well as confidence intervals.

6.3.1 Markov Chain Monte Carlo

The basic sampling is done using a random walk algorithm (hence “Monte Carlo”).
“Markov Chain” means in this context that the position of the sampler ~xt+1 at the
time t + 1 depends only on the position of the sampler ~xt one step before. It does
not matter where it was two, three or a hundred steps before.4 The transition from
~xt+1 to ~xt is performed by the so called transition kernel p(~xt+1|~xt). In order to
visualize this sampling process it is helpful to have a look at figure 6.3. This graphic
depicts a simulated KATRIN likelihood in the m2

ν dimension. Its minimum is at
m2
ν = 0.0 eV2. The different positions of the sampler are represented by the blue

dots in the right hand side figure. It starts somewhat left of 0.02 eV2 and then moves
along the arrows towards the minimum. Once it arrives there it does not rest, but
“walks” with a certain probability away from the minimum (and back again). The
new positions are marked with the other blue dots. The more interesting area near
the minimum is sampled more thoroughly resulting in a higher “blue-dot-density”.
Please keep in mind that this graphic is only for illustration, it is not a quantitative
model - we will come to those later on.

4Markov Chains are used in a variety of fields, including physics, chemistry, economics, Google’s
web-search algorithms and many more [Wiki13].
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6.3.2 Metropolis-Hastings Algorithm

So far the algorithm behaves completely randomly. It may run towards the minimum
but it is equally possible that it moves away from it. In order to minimize this
random behavior and steer the sampler in the right direction we use the Metropolis-
Hastings algorithm. Starting from the current position ~xt in the multidimensional
KATRIN likelihood distribution, the algorithm can be divided in two parts.

• A new point ~y is suggested by a proposal function q(~y|~xt). Different ways to
propose new states will be discussed in 6.4, 6.5 and 6.6.

• After a new position has been proposed it is evaluated using the Metropolis
ratio (eq. (6.5)), which decides whether ~y is accepted as new position ~xt+1 or
if its discarded. In the latter case the sampler stays at ~xt.

r =
p(~y|D, I)

p(~xt|D, I)
· q(~xt|~y)

q(~y|~xt)
(6.5)

Unlike in [Greg10], vectors are used for the different states in eq. (6.5) to clarify that
the sampled likelihood is not one, but at least four-dimensional.
The right fraction is for normalization purposes. If the proposal distribution is
symmetric, then its value is equal to one. To understand the meaning of the first
factor it is helpful to have a look at figure 6.4, which is a magnification of figure 6.3.
The dot that is marked green represents the current position ~xt, for instance, and
the one framed in red is the proposed state ~y. The fraction is therefore the ratio
of the target distribution (the KATRIN likelihood) at these points. If ~y is closer to
the minimum and therefore at a region with a higher probability than at ~xt, then
r > 1 and the proposed state is accepted as new state: ~xt+1 = ~y. The same happens
for r = 1. But r may also have a value between 0 and 1. In this case r becomes
the probability with which we accept ~y as new state. This makes it possible for the
sampler to move away from the extremum with a certain possibility. Looking at
figure 6.4, this means that the sampler may also come out at the other side of the
minimum, or that it may turn around and walk back. This allows the sampling to
take place and also - to some extend - to overcome local minima. The evaluation
process can be summarized with a term called acceptance probability α(~xt, ~y), as it
is done in [Greg10]

α(~xt, ~y) = min(1, r) = min

(
1,
p(~y|D, I)

p(~xt|D, I)

q(~xt|~y)

q(~y|~xt)

)
. (6.6)

It gives the probability that the new state is accepted.

6.3.3 Proof of Convergence

It was said earlier that the values obtained by the sampler represent the posterior
distribution. But how do we know that this is actually the case?
[Greg10] states three properties a Markov Chain needs to fulfill in order to converge
to a stationary distribution:
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Figure 6.4: Enlargement of the one dimensional KATRIN likelihood to explain the
Metropolis-Hastings algorithm.

• The Markov Chain must be irreducible. That means that no matter where
it starts sampling the likelihood distribution, the sampler can end up at ev-
ery point of the distribution - given enough time. The acceptance probability
eq. (6.6), implemented in the Metropolis Hastings algorithm, is for the KA-
TRIN likelihood always > 0. So this criterion is satisfied.

• Furthermore the Markov Cain needs to be aperiodic. This means that there
must not be a point from which it can only jump back to the previous state and
back again. Basically all deterministic periodic behavior has to be forbidden, as
it would contradict criterion one. The random nature of the proposal function
takes care of this criterion.

• Finally, it needs to be positive recurrent: If one value ~x is from the posterior
distribution, then all sampled values after that are from the same distribution.
To show that our Markov Chain suffices this criterion I will present a proof
according to [Pres07].

Let us begin with the detailed balance equation

p(~xt|D, I)p(~xt+1|xt) = p(~xt+1|D, I)p(~xt|~xt+1). (6.7)

The left side of eq. (6.7) describes a process consisting of two steps. First, a point of
the likelihood is chosen - e.g. the green-framed one in figure 6.4 - with probability
p(~xt|D, I). Then, the sampler jumps to a random other point - for example the
red one in figure 6.4. This happens with the transition probability p(~xt+1|xt). This
product equals the probability of choosing the red point to begin with, and then
jumping towards the green state. This is similar to a thermal equilibrium in statis-
tical mechanics, for instance. But does the Metropolis Hastings proposal function
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really satisfy eq. (6.7)? One can easily show that this is the case, by multiplying
eq. (6.6) with the denominator of the second term in the brackets

p(~xt|D, I)q(~xt+1|~xt)α(~xt, ~xt+1) = min[p(~xt|D, I)q(~xt+1|~xt), p(~xt+1|D, I)q(~xt|~xt+1)]

= min[p(~xt+1|D, I)q(~xt|~xt+1), p(~x|D, I)q(~xt+1|~xt)]
= p(~xt+1|D, I)q(~xt|~xt+1)α(~xt+1, ~xt).

(6.8)

The second step is obtained by writing the same equation with ~x and ~xt+1 exchanged
and also multiplying with the denominator. Using the identity of the transition
probability p(~xt+1|~xt) = q(~xt|~xt+1)α(~xt, ~xt+1), this is equal to the detailed balance
equation (6.7).
What is left is that we need to show that a Markov Chain, satisfying the detailed
balance equation, is positive recurrent. This is done by integrating over eq. (6.7).
The result is the marginal probability distribution of ~xt+1.∫

p(~xt|D, I)p(~xt+1|xt)d~xt =

∫
p(~xt+1|D, I)p(~xt|~xt+1) d~xt

= p(~xt+1|D, I)

∫
p(~xt|~xt+1) d~xt

= p(~xt+1|D, I).

(6.9)

This is exactly the definition of a stationary distribution. Therefore we have shown
that once we obtained a sample, all of the following points will be from the same
stationary distribution5 [Greg10].

6.4 Gaussian Transition Kernel

Now that we know the basic principles of Markov Chain Monte Carlo (subsection
6.3.1), how it works (subsection 6.3.2) and that it works (subsection 6.3.3), it is
time to look at a concrete implementation of the Metropolis-Hastings algorithm.
The first step of this algorithm is to propose a new state in the multidimensional
KATRIN likelihood space. If this state is accepted, it becomes the next member
of the Markov Chain. A common and easy way to propose such a new state is to
use a multivariate Gaussian distribution as a transition kernel. Such a function -
which is depicted in figure 6.5 for two dimensions - will choose a state that is close
to the current position with a higher probability than a state that is further away.
The width of the Gaussian transition kernel has a high influence on the process of
sampling. If it is too small, the movement in the likelihood space is very slow. The
sampling process takes a lot of time and we have to wait longer until a sample of
the posterior distribution is obtained. If the width of the proposal function is too
big, however, it is likely that new states ~y are suggested that are very far away.
Because of their large distance to the current state many of them may happen to
have a worse value of the likelihood and therefore a small Metropolis ratio (eq. (6.5)).

5For a lecture-like introduction to this topic I recommend the online courses by Stanford’s
professor D. Koller that are available through OpenCourseOnline [Koll12].
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Figure 6.5: Two-dimensional Gaussian distribution that can be used as a transition
kernel to propose the next state of the Markov Chain.

These suggestions for the new parameter are usually rejected. If this happens too
often, our algorithm is slowed down significantly. Therefore it is important to tweak
the width considerately6.

6.4.1 Implementation and Properties

This program was implemented into the KATRIN analysis framework Kasper using
the programming language is C++. It can be used for simulations as well as for
the future analysis of real KATRIN data. Further details on the implementation
and instructions on how to use the code can be found in appendix B. The code also
provides the foundation for the Hamiltonian Monte Carlo and Riemannian Manifold
Hamiltonian Monte Carlo method (see sections 6.5 and 6.6). Before we have a look
at the results of some simulations it is important to discuss some of the properties.
Some basic terms are explained as well. Most of them are also used in the description
of the other routines.

• Burn-in period: This is the time in the beginning that the sampler needs to
converge towards the minimum. These entries need to be deleted from the
Markov Chain because the sampler has not converged yet and therefore does
not represent the posterior distribution.

6For this purpose an algorithm called “error control” was implemented. It is explained in section
6.4.1.
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• Smearing: This is a method implemented to make the simulation similar to
a real measurement. After the expected electron count rates at KATRIN are
simulated and multiplied with the measurement time at that point, we have
the number of expected counts. Smearing is accomplished by adding a random
value of a Poisson distribution with standard derivation equal to the square
root of the number of counts. This blurring simulates the β-decay because its
random numbers are Poisson distributed.

• Error Control: As mentioned earlier the stepsize - for this method it is the
width of the Gaussian proposal function - is crucial for an efficient sampling
process. Steps that are too large lead to a high rate of discarded entries. If the
stepsize is small, so that almost every new state is accepted, the movement
in the multidimensional space is slow. A. Gelman, W. R. Gilks and G. O.
Roberts calculated in [GeGR97] that it is optimal for a MCMC method with
a Gaussian transition kernel to discard 76.6 % of all proposed new states ~y.
That means that the acceptance rate is 23.4 %. This is only true for three or
more dimensions. If we were to sample a one or two dimensional likelihood,
the optimal acceptance rate is about 50 % [RoCa10]. Error Control is a routine
in the code that compares the current acceptance rate with the ideal one and
adjusts the step-size accordingly. This is only done in the very beginning of
the program until the optimal step-size is determined. These entries to the
Markov Chain should be discarded.

• Acceptance rate: As mentioned in the last item, the acceptance rate needs to
be adjusted for each problem. This can be done in the configuration file. An
exemplary configuration file is shown in appendix C.

• Parallel tempering: Parallel tempering is a procedure that gives MCMC meth-
ods a huge advantage over other minimizing routines because it permits to
leave local minima. This is important because usually - e.g. if using a simplex
minimizer - one cannot tell if one arrived at the global minimum or got stuck
in a local one.
This is accomplished by introducing a new parameter, the so called tempera-
ture T . The underlying idea is to allow the system to switch from one state
in the likelihood space to another. Therefore a series of Markov Chains with
a different value of T are run in parallel. T equals one for the desired target
distribution, but has a higher value for the other chains. This higher value
leads to a flatter posterior distribution - therefore making it easier for the sam-
pler to leave local minima. Obviously the flatter distribution is not what we
want to sample from. But this does not matter because only the states that
are produced by the T = 1 Markov Chain are saved. After a certain number
of transitions two chains are chosen randomly and are interchanged with a
certain probability r that is shown in eq. (6.10),

r = min

(
1,
π(~xt,i+1|D, βi, I)π(~xt,i|D, βi+1, I)

π(~xt,i|D, βi, I)π(~xt,i+1|D, βi+1, I)

)
, (6.10)
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where i is the index for the chains with different T -values, β equals 1
T

and π
is given by eq. (6.11) [Greg10],

π(~x|D, β, I) = p(~x|I) p(D|~x, I)β

= p(~x|I) exp[β ln[p(D|~x, I)]], for 0 < β < 1.
(6.11)

Using this method it is possible to leave local minima and to get the wanted
result [Greg10], [ChQL01].

• Autocorrelation: The new state is proposed within a certain range of the recent
state. Therefore one can expect subsequent parameter values within the whole
Markov Chain to be correlated. On larger scales, however, the Markov Chain
should not display a deterministic, but a random behavior. According to
[Hans00] this correlation can be quantified by the autocorrelation function,

ρ(l) =
1

N

N∑
i=1

y(i)y(i− l). (6.12)

In eq. (6.12) y(~x) represents the sequence and l the lag.

• ESS: This is an abbreviation for effective sample size and is described by the
following formula:

ESS =
lmax − istart

tac

. (6.13)

The numerator is the difference of the maximum length lmax and the start
index istart, which is divided by the autocorrelation time tac. It provides a
good measure for the efficiency of an algorithm. The larger this value, the more
uncorrelated and therefore usable samples are obtained [GiCa11], [Lan+12].

• ESS
t

: This is simply the time-normalized effective sample size. It provides
a reasonable measure to compare different algorithms that usually have very
different runtimes.

6.4.2 Results

In this section some results for a simulated KATRIN likelihood are presented. Dif-
ferent runs for various starting conditions are made in order to enable an easy
comparison with the other methods. Besides the obvious parameters that are to be
compared - like the convergence time - the algorithms are also evaluated according
to ESS and ESS

t
that were introduced in the previous section. A detailed comparison

takes place in section 6.7. The simulations were carried out with a simplified final
state distribution.
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First example: Sampling around the minimum

For this first run the starting values were set to those of the minimum of the simu-
lated spectrum:

• Endpoint energy: E0 = 18, 575.0 eV

• Electron neutrino mass squared: m2
ν = 0.0 eV2

• Signal amplitude: Rsig = 1.0

• Background rate: Rback = 0.01 Hz

This choice of starting conditions assures that the sampling starts right away because
the four parameters that are usually minimized are already at their minimal values.
Therefore no burn-in period will be visible. The following settings were used:

• Seed: 12345

• Length: 50000

• Acceptance Rate: 23.4 %

The computation on the KATRIN computing cluster Tesla-cluster took about six
minutes7. It yielded the following results (median):

• Endpoint energy: E0 = 18575.0(−0.00148|0.00139) eV

• Electron neutrino mass squared: m2
ν = −1.3(−816|826) · 10−5 eV2

• Signal amplitude: Rsig = 99999.50(−1.72|1.71) · 10−5

• Background rate: Rback = 1000.01(−1.94|1.96) · 10−5 Hz

• Parameter convergence time: 400, 1100, 400, 250

• ESS: 423

• ESS
t

: 1.20 1
s

The values in brackets are the 1σ-confidence intervals. All results are consistent
with the true values of the simulation. The three figures 6.6, 6.7 and 6.8 illustrate
the sampling process, the visualization of the correlation between two parameters
and the autocorrelation function. These figures only give a brief insight in what is
possible to visualize. The other parameters or three dimensional correlation plots
could have been plotted as well. It is important to keep in mind that even though i.e.
fig. 6.6 just shows m2

ν over time, the sampler always moves in the four dimensional
parameter space. The other three parameters are sampled simultaneously.

7For comments about the runtime please see subsection 6.7.1.



62 6. Data Analysis for KATRIN

Time
0 10000 20000 30000 40000 50000

2 ν
m

-0.02

0

0.02

0.04

Figure 6.6: Gaussian transition kernel, example 1: Sampling of the neutrino
mass m2

ν with the Metropolis Hastings algorithm and a Gaussian transition kernel
around the minimum. The sampler walks nicely around zero which is the expected
value.
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Figure 6.7: Gaussian transition kernel, example 1: Correlation of the neutrino
mass m2

ν with the endpoint energy E0 as obtained by sampling with the Metropolis
Hastings algorithm and a Gaussian transition kernel. One observes a high correlation
of 86.3 %
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Figure 6.8: Gaussian transition kernel, example 1: Autocorrelation function
for the neutrino mass m2

ν as obtained by sampling with the Metropolis Hastings
algorithm and a Gaussian transition kernel.

Second example: Sampling away from the minimum

Now that we saw the behavior of the Metropolis Hastings algorithm when it starts
at the minimum, it is time to look at something more realistic. What happens,
for example, if we do not feed the program with the right values but start at a
random position? The approach will test the ability of the algorithm to find the
minimum. This is very important with real life data because usually the true value
is not known. The following start values were chosen. These can be compared with
the true input values from subsection 6.4.2.

• Endpoint energy: E0 = 18575.5 eV

• Electron neutrino mass squared: m2
ν = 0.2 eV2

• Signal amplitude: Rsig = 1.2

• Background rate: Rback = 0.013 Hz

Seed, length and acceptance rate were the same as in the previous run. By looking
at the results we can see clearly that the Metropolis Hastings algorithm with the
Gaussian transition kernel had no real problems with the intricate initial values.
The true values lie within the confidence intervals of all the parameters.

• Endpoint energy: E0 = 18575.0(−0.00147|0.00143) eV

• Electron neutrino mass squared: m2
ν = −3.2(−86.8|86.0) · 10−4 eV2
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Figure 6.9: Gaussian transition kernel, example 2: Convergence towards the
minimum of the neutrino mass m2

ν with the Metropolis Hastings algorithm and
a Gaussian transition kernel. After about 750 steps it reaches the minimum and
sampling begins.

• Signal amplitude: Rsig = 100001.0(−17.7|18.4) · 10−5

• Background rate: Rback = 999.82(−1.89|2.09) · 10−5 Hz

• Parameter convergence time: 950, 150, 750, 2150

• ESS: 5.01

• ESS
t

: 0.0155 1
s

Again the results can be visualized with some figures. The burn-in phase can be
seen nicely in figures 6.9 and 6.10. In the latter it also becomes apparent that the
sampler moves in the multi-dimensional parameter space. The figures 6.11, 6.12 and
6.13 are very similar to the respective illustrations in subsection 6.4.2.

Third example: Sampling with smearing

In this subsection an even more realistic approach is demonstrated. Not only are
the start values of the parameters away from the minimum but also smearing is
activated. At the beginning the sampler is almost at the same point as in subsection
6.4.2. Only the signal amplitude has a slightly lower value: Rsig = 1.1. Smearing,
which was introduced in subsection 6.4.1, entails a certain blurring to the simulated
counts. In real life this uncertainty can come through to unknown effects or simply
because the values are Poisson distributed. Because of this uncertainty the clean
results we have seen so far are not to be expected again, even though seed, length
and acceptance rate remain unchanged to the previous runs. After the simulation
the following median values for the parameters are obtained:
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Figure 6.10: Gaussian transition kernel, example 2: Convergence towards the
minimum of the sampler in two dimensions: the neutrino mass squared m2

ν and
the endpoint energy E0. It starts at the right side, walks all the way down to the
bottom left until it finally reaches the minimum in the middle of the figure. If one
discards those first steps (that belong to the burn-in phase), we get the correlation
plot depicted in figure 6.12.
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Figure 6.11: Gaussian transition kernel, example 2: After the burn-in phase is
finished and the sampler has reached the minimum, the sampling of m2

ν begins. The
Metropolis Hastings algorithm with the Gaussian transition kernel walks around the
minimum and the result is very similar to that of figure 6.6.
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Figure 6.12: Gaussian transition kernel, example 2: Correlation of the neutrino
mass m2

ν with the endpoint energy E0 as obtained by sampling with the Metropolis
Hastings algorithm and a Gaussian transition kernel. The values before the minimum
is reached are discarded. One observes a correlation of 77.3 %
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Figure 6.13: Gaussian transition kernel, example 2: Autocorrelation function
for the neutrino mass m2

ν as obtained by sampling with the Metropolis Hastings
algorithm and a Gaussian transition kernel.
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Figure 6.14: Gaussian transition kernel, example 3: Convergence towards the
minimum of the neutrino mass m2

ν with the Metropolis Hastings algorithm and
a Gaussian transition kernel. After about 850 steps it reaches the minimum and
sampling begins. Smearing has almost no influence in this period.

• Endpoint energy: E0 = 18575.0(−0.00148|0.00153) eV

• Electron neutrino mass squared: m2
ν = −18.59(−9.04|9.10) · 10−3 eV2

• Signal amplitude: Rsig = 10002.30(−1.92|1.84) · 10−4

• Background rate: Rback = 996.70(−1.91|1.92) · 10−5 Hz

• Parameter convergence time: 800, 850, 1200, 600

• ESS: 30.3

• ESS
t

: 0.176 1
s

They still describe the true values very well but the confidence intervals of m2
ν and of

Rsig no longer yield the true values. This can be observed in figure 6.15: The sampler
now does not walk along the value zero, but around −0.02. Smearing, however, does
not have a visible effect on the convergence. This can be seen in figure 6.14 which
looks very similar to figure 6.9. The correlation plot of parameter m2

ν and E0 (figure
6.16) does not change significantly, provided the burn-in phase is cut of. The same
is true for the autocorrelation (figure 6.17).

6.4.3 Posterior Distribution

In the last three examples we have seen the behavior of the Metropolis Hastings al-
gorithm with a Gaussian transition kernel. If it does not start at the minimum, the
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Figure 6.15: Gaussian transition kernel, example 3: After the burn-in phase is
finished and the sampler has reached the final value, the sampling of m2

ν begins. The
Metropolis Hastings algorithm with the Gaussian transition kernel walks around the
minimum. Because of the activated smearing a slightly too low value is obtained.

0E
18574.992 18574.994 18574.996 18574.998 18575 18575.002 18575.004

2 ν
m

-0.04

-0.02

0

0.02

Figure 6.16: Gaussian transition kernel, example 3: Correlation of the neutrino
mass m2

ν with the endpoint energy E0 as obtained by sampling with the Metropolis
Hastings algorithm and a Gaussian transition kernel. The values before the minimum
is reached are discarded. One observes a correlation of 69.6 %
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Figure 6.17: Gaussian transition kernel, example 3: Autocorrelation function
for the neutrino mass m2

ν as obtained by sampling with the Metropolis Hastings
algorithm and a Gaussian transition kernel and enabled smearing.

sampler will find it in the multi-dimensional parameter space (thanks to the evalua-
tion with the Metropolis ratio) and then starts sampling. This sampling results in a
Markov Chain that was visualized for the neutrino mass m2

ν for all three examples.
The median of the values in the respective chains is the value that was given for
the parameters. Beyond that it is possible to depict even more: For example the
correlation of different parameters, as was shown for m2

ν and E0.
But how do we get the posterior distribution that was praised as being the real
advantage of these Monte Carlo methods? The values of the Markov Chain (after
the burn-in period) are simply filled into a histogram. After normalization we get
a histogram with the posterior probabilities for this parameter. In figure 6.18 this
was done for the Markov Chain of the neutrino mass m2

ν of our first example (the
corresponding Markov Chain is depicted in figure 6.6). One can observe the prob-
abilities for m2

ν being in one bin or accumulate the probabilities to see how likely
it is that the neutrino mass lies within a certain interval. Besides the median that
was already given in subsection 6.4.2 we can also calculate the mean, or read off the
value with the highest probability:

m2
ν, median = −1.33 · 10−5,

m2
ν, mean = +9.29 · 10−6,

m2
ν, max. prob. = −9.27 · 10−4.

(6.14)

6.5 Hamiltonian Monte Carlo

In the last chapter, we have seen that the Metropolis Hastings algorithm with a
Gaussian transition kernel works fine for the sampling of the parameters. However,
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Figure 6.18: Normalized posterior distribution for the Markov Chain from the first
example. The y-axis gives the posterior probability for m2

ν having the value on the
x-axis, given the input data.

figures 6.9 and 6.14 show one shortcoming of this method: It takes a lot of steps
to converge towards the minimum. Before it is reached the algorithm occasionally
moves away in all directions. This random behavior does not come as a big surprise -
the proposal function is symmetrical and therefore about half of the suggested states
do not lie in the direction of the minimum - for each dimension. The evaluation
with the Metropolis ratio still leads the sampler to the right direction, but one could
wonder if there is not a more efficient way to do this. One could, for example,
use the gradient information at the current position and let the sampler “walk” in
this direction. Exactly this is carried out in the procedure presented in this section.
Because of similarities to the classical Hamiltonian mechanics, this approach is called
Hamiltonian Monte Carlo (HMC) and was first introduced by S. Duane, A. Kennedy,
B. Pendleton and D. Roweth in 1987 [Neal12].
This more sophisticated method does not change the way the proposed states are
evaluated. The Metropolis Hastings algorithm, which was described in 6.3.2, is
still the underlying principle. That means we can still rely on the detailed balance
equation (eq. (6.7)) to be fulfilled and therefore the proof of convergence (see section
6.3.3) to be valid. Only the way changes, how new states in the multi-dimensional
likelihood space are proposed.

6.5.1 Concept of Hamiltonian Monte Carlo

We want to use the gradient information of the likelihood space in order to improve
the efficiency of convergence. To do this we assign a mass to the sampler and
interpret the likelihood distribution as some kind of gravitational potential. The
consequence can be visualized with figure 6.19, where a ball is used to represent the
sampler. This ball will roll towards the minimum. Its potential energy will become
smaller and it will build up momentum. We define:
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Figure 6.19: The sampler - here visualized with a soccer ball - is assigned a mass (the
weight of the ball). If the likelihood distribution is understood as a gravitational
potential, the ball will roll towards the minimum. If it experiences a rising slope
then it can continue, thanks to its built-up momentum. After all the kinetic energy
is transformed to potential energy, the ball will turn around and roll back down.
This enables the sampling around the minimum but also - to some extent - the
overcoming of local minima.

• A position variable ~q, that describes a point in the parameter space. This
parameter is saved in the Markov Chain.

• A momentum variable ~p for the sampler. This goes hand in hand with the
introduction of the mass of the moving sampler.

• An Hamiltonian energy function that can be seen in eq. (6.15). The kinetic en-

ergy K(~p) is equal to |~p|
2

2m
and the potential energy U(~q) is minus the logarithm

of the probability density for the variables at the current position [Neal12],

H(~p, ~q) = K(~p) + U(~q) =
|~p|2

2m
− log(L(~q)). (6.15)

This is completely analogous to classical mechanics. Therefore we can use the Hamil-
ton equations of motion to describe the movement of the sampler in the parameter
space:

dqi
dt

=
∂H

∂pi
,

dpi
dt

= −∂H
∂qi

.

(6.16)

The momentum variables define the direction of movement and make large step-
sizes possible, without fear of a high rejection rate. The HMC algorithm obtains
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a Markov Chain by alternating between updates of the position and momentum
variables. The position values are saved and form the Markov Chain, from which -
similar to the previous section - the posterior distribution can be obtained.

6.5.2 Implementation

The implementation that is described in this subsection was carried out as an ex-
tension of the code for MCMC with a Gaussian transition kernel. That means the
programs that were written for the Metropolis-Hastings algorithm are still used.
These basic functions were described in section 6.4.1 and in appendix B. The other
files that are to be presented in this section can be found in the Kasper/KaFit-folder.
The HMC program is started in the same way, only some adjustments in the con-
figuration file are needed8.
In order to implement HMC on a computer a discretization of the time for the Hamil-
ton equations (eq. (6.15)) is necessary. A standard approximation for a system of
differential equations is Euler’s method. The values for pi(t) and qi(t) are evaluated
at discrete values of time. Sadly, it can be shown that ~p diverges to infinity for
simple examples [Neal12]. That is why we had to implement a more complicated
approximation: the leapfrog method. The equations for pi(t) and qi(t) are again
broken down to discrete values by evaluating them only at certain time steps. As
advancement to Euler’s method there is a third equation that represents a half-step.
The whole method can be described with the following three equations [Neal12]:

pi

(
t+

ε

2

)
= pi(t)−

ε

2

∂U

∂qi
(q(t)) , (6.17)

qi(t+ ε) = qi(t)− ε
pi(t+ ε

2
)

mi

, (6.18)

pi(t+ ε) = pi

(
t+

ε

2

)
− ε

2

∂U

∂qi
(q(t+ ε)). (6.19)

Here mi is the value for the assigned mass and ε is the length of a “frog-leap”. In
eq. (6.17) a half step for the momentum variable is performed. The new value of
pi(t+

ε
2
) is used in eq. (6.18) for the calculation of a full step of the position. Finally,

another half step for the position variables is executed (eq. (6.19)), again with the
values obtained in the previous equation. To describe the whole time evolution these
equations can be executed successively. Then it makes sense to combine eq. (6.17)
and eq. (6.19) to form a whole step of the momentum. Only in the beginning and
in the end of the algorithm a half step is performed. After a certain number of
such leapfrog steps the new position is evaluated using the Metropolis-Hastings al-
gorithm. If the new value is accepted it is saved in the Markov Chain. If, however,
the evaluation fails because the Metropolis ratio worsened, the latest leapfrog-steps

8The sampling method has to be changed from “Metropolis” to “Hamiltonian”. A number of
frog-leaps (variable: NumberOfFrogLeaps) has to be defined. And the acceptance rate should be
set to 65.1 % for an efficient sampling process [Besk+10]. See also appendix C for an exemplary
configuration file.
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are discarded and the sampler moves back to the last accepted state. This can be
visualized with the metaphor of a frog, which gave this algorithm its name: At the
beginning the frog sits at the starting position. It has a fixed mass and a random
initial momentum is diced. Then it starts jumping and the gravitational potential
pulls it towards the minimum. After a pre-fixed number of leaps the new position
is evaluated and the frog is either left at his current place or picked up and set
back. In both cases the algorithm starts again and is repeated until the maximum
length of the Markov Chain is reached. The formulas of this algorithm preserve the
volume, are time-reversible and energy-preserving and therefore leave the posterior
distribution invariant [ChQL01].
Even though the formulas eq. (6.17) - eq. (6.19), that form the core of the HMC
algorithm, are quite short, the implementation is much longer. It took place in
the Walk -Routine of the file KFMCHamiltonian.cxx. With 300 lines of code this
program is about twice as long as the simpler Gaussian transition kernel. The ex-
tra lines are due to programming procedures and extra implementations like the
treatment of constraints. This code covers the case that the sampler moves out of
the allowed region. A simple way of handling such boundaries - for example that
the neutrino mass squared cannot be negative - would be to simply evaluate the
position after each run. The downside of this unpretentious algorithm is that if the
sampler is indeed in a forbidden region it will simply be moved back. If the mini-
mum lies near such a region this will happen a lot and the computation time will
be increased massively. A better approach is the one of an infinite potential rise at
the boundary. The sampler will move up the potential barrier and on the way lose
all its kinetic energy. Then it stops, turns around and rolls back into an allowed re-
gion - it is literally reflected at the potential wall. Therefore the sampler never really
enters forbidden regions without a significant increase in computation time [Neal12].

6.5.3 Results

Now that we have seen the concept of HMC, how it is implemented and how it
can be used for the KATRIN analysis, the results of some sample-runs are to be
presented. Following the approach of section 6.4.2 examples with different starting
conditions are presented. The basis for the analysis is again a simulated KATRIN
likelihood with a simplified final state distribution.

First example: Sampling around the minimum

This first example deals with the easiest starting conditions and will demonstrate
HMC’s ability to perform the sampling process. Therefore the sampler is set to the
optimal values of the parameters, so that no minimum has to be found:

• Endpoint energy: E0 = 18575.0 eV

• Electron neutrino mass squared: m2
ν = 0.0 eV2

• Signal amplitude: Rsig = 1.0

• Background rate: Rback = 0.010 Hz
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Besides that the following settings were used:

• Seed: 12345

• Length: 50000

• Acceptance Rate: 65.1 %

• Number of frog leaps: 10

Seed and length are the same as in section 6.4.2. The acceptance rate is tweaked to
the optimal value for HMC and the new parameter NumberOfFrogLeaps is introduced
[Besk+10]. It is the number of times that the algorithm “jumps”, before the position
is evaluated with the Metropolis ratio. The values for the parameters that are
determined by this algorithm are very well in correspondence with the true values:

• Endpoint energy: E0 = 18575.0(−0.00147|0.00147) eV

• Electron neutrino mass squared: m2
ν = −0.25(−8.70|8.93) · 10−3 eV2

• Signal amplitude: Rsig = 10000.1(−1.86|1.84) · 10−4

• Background rate: Rback = 1000.02(−2.02|2.01) · 10−5 Hz

• Parameter convergence time: 200, 400, 200, 250

• ESS: 632

• ESS
t

: 0.0321 1
s

The graphs, too, show that the algorithm works very well. Figure 6.20 depicts the
sampling process. The sampler moves symmetrically around the true value zero and
the states are more randomly distributed than with the Gaussian transition kernel
(see figure 6.6) - which is exactly what we want. The correlation is visualized in
figure 6.21. Finally, figure 6.22 shows that there is almost no autocorrelation.

Second example: Sampling away from the minimum

Now that we have seen that the algorithm does a great job at sampling we can
have a look at the convergence behavior. Therefore the starting values are set to
those of section 6.4.2, which is relatively far away from the minimum. All the other
parameters are the same as in the previous run. The results bear no surprises; the
algorithm converges quite well.

• Endpoint energy: E0 = 18575.0(−0.00148|0.00146) eV

• Electron neutrino mass squared: m2
ν = −0.24(−8.74|8.85) · 10−3 eV2

• Signal amplitude: Rsig = 10000.10(−1.84|1.84)
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Figure 6.20: HMC, example 1: Sampling of the neutrino mass m2
ν with the

Metropolis Hastings algorithm and the Hamiltonian Monte Carlo method around
the minimum. The sampler walks nicely around the expected value zero.
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Figure 6.21: HMC, example 1: Correlation of the neutrino mass m2
ν with the

endpoint energy E0 as obtained by sampling with the Metropolis Hastings algorithm
and the HMC method. One observes a high correlation of 87.3 %.
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Figure 6.22: HMC, example 1: Autocorrelation function for the neutrino mass
m2
ν as obtained by sampling with the Metropolis Hastings algorithm and HMC. The

very symmetric distribution shows that there is almost no autocorrelation.

• Background rate: Rback = 1000.03(−2.01|1.99) · 10−3 Hz

• Parameter convergence time: 150, 150, 250, 350

• ESS: 464

• ESS
t

: 0.04081
s

Figures 6.23 and 6.24 make the differences to the simple Gaussian transition kernel
even more apparent than the previous example. HMC converges very fast and after
less than 20 steps the minimum is reached and sampling (figure 6.25) begins. The
correlation plot (figure 6.26) looks very similar to the one before (figure 6.21) and the
correlation has the same value of 87.3 %. Finally, figure 6.27 gives the autocorrelation
plot.

Third example: Sampling with smearing

This third test is carried out analogously to section 6.4.2. The start values are away
from the minimum and an uncertainty - called smearing - is applied to the simulated
rates. This makes the simulation realistic. The other settings are the same as in
the last two example runs. Hamiltonian Monte Carlo shows no difficulties dealing
with this new setup which can be seen in the following four graphs. Figure 6.28
shows that the gradient-led sampler still converges very fast. Once it is converged,
the sampling begins (figure 6.29). Due to the smearing it is slightly shifted towards
negative values. The correlation plot in figure 6.30 shows the same shift. The
autocorrelation (figure 6.31) does not seem to be affected. The results underline
what we have seen so far:
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Figure 6.23: HMC, example 2: Convergence towards the minimum of the neutrino
mass m2

ν with the Metropolis Hastings algorithm and the Hamiltonian Monte Carlo
method. After less than 20 steps it reaches the minimum and sampling begins.

Figure 6.24: HMC, example 2: Convergence towards the minimum of the sampler
in two dimensions: the neutrino mass squared m2

ν and the endpoint energy E0. It
starts at the top right corner from where it moves quickly towards the minimum.
This fast convergence is thanks to the use of gradient information. If one discards
the first 20 steps the correlation plot depicted in figure 6.21 is obtained.
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Figure 6.25: HMC, example 2: Sampling of the neutrino mass m2
ν with the

Metropolis Hastings algorithm and the Hamiltonian Monte Carlo method around
the minimum. The sampler walks nicely around the expected value zero.
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Figure 6.26: HMC, example 2: Correlation of the neutrino mass m2
ν with the

endpoint energy E0 as obtained by sampling with the Metropolis Hastings algorithm
and the Hamiltonian Monte Carlo method. One observes a high correlation of 87.3 %.
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Figure 6.27: HMC, example 2: Autocorrelation function for the neutrino mass m2
ν

as obtained by sampling with the Metropolis Hastings algorithm and the Hamilton
Monte Carlo method. The very symmetric distribution shows that there is almost
no autocorrelation.

• Endpoint energy: E0 = 18575.0(−0.00149|0.00146) eV

• Electron neutrino mass squared: m2
ν = −18.96(−8.77|8.83) · 10−3 eV2

• Signal amplitude: Rsig = 10002.30(−1.84|1.86) · 10−4

• Background rate: Rback = 996.65(−2.00|2.00) · 10−5 Hz

• Parameter convergence time: 100, 100, 100, 350

• ESS: 303.061

• ESS
t

: 0.01871851
s

Besides the endpoint energy all the values are slightly too little. This is in good
accordance with what one expects for enabled smearing.

6.5.4 Influence of the Parameters

In this subsection, the results of dozens of tests are shown on how the different pa-
rameters and routines influence the results.

• Start values: A variation of the start values is the most obvious modification.
An insight into these tests was also given in the previous examples. Longer
series of tests do not yield other results. When the start values are equal
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Figure 6.28: HMC, example 3: Convergence towards the minimum of the neutrino
mass m2

ν with the Metropolis Hastings algorithm and HMC with activated smearing.
After less than 20 steps it reaches the minimum and sampling begins.
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Figure 6.29: HMC, example 3: Sampling of the neutrino mass m2
ν with the

Metropolis Hastings algorithm and HMC with activated smearing. The sampler
walks around the determined minimum. Because of smearing this value is slightly
smaller than the input value zero.
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Figure 6.30: HMC, example 3: Correlation of the neutrino mass m2
ν with the

endpoint energy E0 as obtained by sampling with the Metropolis Hastings algorithm
and HMC with activated smearing. One observes a high correlation of 87.4 % which
is almost the same as without smearing.
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Figure 6.31: HMC, example 3: Autocorrelation function for the neutrino mass m2
ν

as obtained by sampling with the Metropolis Hastings algorithm and the Hamilton
Monte Carlo method with activated smearing. The very symmetric distribution
shows that there is almost no autocorrelation - similar to the figure without smearing.



82 6. Data Analysis for KATRIN

to those of the location of the minimum, sampling starts right away. If the
sampler begins at a position away from the minimum it converges towards the
minimum. This process may take a while - especially if one uses the Gaussian
transition kernel instead of HMC. In extreme cases, e.g. if the starting values
are nowhere near the minimum, it may happen that the algorithm does not
converge at all. In this case the program will give an error message.

• Optimal number of frog-leaps L: This is the number of frog-leaps that are
conducted before the new position is evaluated again with the Metropolis ratio.
Small numbers lead to very little movement, but if the number is too big, a lot
of additional calculations are required. This raises the runtime unnecessarily.
Throughout literature there is no consensus on what the optimal number is. In
my tests, however, it became apparent that stepsizes between five and 15 yield
very good results for the KATRIN likelihood. Therefore I would recommend
a value of ten, which leads to faster convergence than L = 5, but takes less
calculation time than L = 15.

• Variation of the number of frog-leaps: The sampling process can be even more
randomized by varying the number of frog-leaps. This was accomplished by
adding a randomly chosen value of a Gaussian distribution to L. The normal
distribution has a width of one. If the input value for L is ten the program will
also sample with values between seven and 13 (and occasionally even smaller
or bigger values).

• Coupling of ε and L: ε is the length of a frog-leap. That means the product
of ε and L is the stepsize of the HMC algorithm. It makes sense to keep this
stepsize at a fixed value that is reasonable for the parameter - for example the
size of the error of that parameter. Running tests without this coupling show
that it is still possible, but it does not achieve any improvement.

• Stepsize and error control: Tests have shown that a stepsize in the area of the
errors of the parameters works very well. That is about 0.0015 for E0, 0.009
for m2

ν , 0.0002 for the signal amplitude and 2·10−5 for the background rate.
But if the values are too small or too big it does not matter - as long as error
control is activated. This feature will compare the current acceptance rate
with the target value and adjust the stepsize accordingly. After several cycles
error control deactivates itself. The samples obtained while error control was
still active should be discarded.

• Influence of smearing: As demonstrated in the previous examples, smearing
has an influence on the results. The convergence towards the minimum is not
significantly slower, but the position of the minimum may be changed slightly.9

• Influence of boundaries: As long as the minimum lies in the allowed region
(and not outside the pre-set boundaries) the algorithm will still converge. If the
boundary is close to the minimum, sharp cuts can be seen in the visualization.

9For HMC it is advisable to set the value for error scaling to 0.1, if smearing is activated.



6.6. Riemannian Manifold Hamiltonian MC 83

• Mass of the sampler: The mass of the sampler was fixed to the value one. In
the Riemannian Manifold Hamiltonian Monte Carlo algorithm the mass will
play a more important role. This is discussed in the next chapter.

6.6 Riemannian Manifold Hamiltonian MC

In the last two sections, two powerful algorithms were presented: Markov Chain
Monte Carlo with either a Gaussian transition kernel or with the Hamiltonian Monte
Carlo method. Both programs are well implemented in the KATRIN-analysis frame-
work and fulfill all of our expectations. The examples that have been presented prove
that these Bayesian methods provide a good alternative to Minuit. Thanks to their
abilities in dealing with many dimensions and very complex likelihood distributions,
it is also possible to make fits with even more parameters. The tritium purity or
the high voltage fluctuations can easily be implemented as well - only minor changes
in the configuration file are needed. Additionally, these algorithms, especially the
HMC method, make it feasible to consider the effects of a sterile neutrino. This will
result in in second minimum of the likelihood function, which is difficult to handle
for ordinary algorithms. Thanks to parallel tempering the MCMC algorithms are
able to deal with this complexity. This has been shown in [Haag13].
Even though these two algorithms seem to address all the issues one can imagine
with the KATRIN data analysis, another, even more sophisticated approach was
implemented: Riemannian Manifold Hamiltonian Monte Carlo (RMHMC). This
method is presented in this section.

6.6.1 Concept of RMHMC

For very high dimensional distributions and very strong correlations and therefore
really complex likelihood functions, the HMC method might not be sufficient. This
can be exemplified with a 100-dimensional funnel distribution (see figure 6.32), which
has been done in [Beta12]. The HMC stepsize does not take the curvature of the
likelihood space into account. Therefore an efficient stepsize is too large for the
small entry of the funnel and the HMC sampler is not able to explore it properly.
The general idea behind RMHMC is to replace the mass that was introduced for
HMC with a complex metric that takes the curvature of the space into account. This
raises the computation time, but it may come in handy, if future modifications of the
KATRIN experiment require the handling of highly curved likelihood distributions.

But let us start at the beginning. For the Hamiltonian Monte Carlo algorithm the
kinetic energy has a simple form (see eq. (6.15)). With RMHMC a stepsize is wanted
that can also explore areas with very high curvature. Therefore the kinetic energy
is replaced with

T (~p, ~q) =
1

2
~pT · ~Σ−1(~q) · ~p+

1

2
log |~Σ(~q)|, (6.20)

where ~Σ(~q) is a metric whose proper choice can “dynamically decorrelate and rescale
the target distribution to avoid inefficiencies in the numerical integration, while
also yielding a dynamic determinant whose variations can compensate for much
larger variations in the potential” [Beta12]. The trajectories that one obtains with
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Figure 6.32: This picture from [Beta12] shows one of the advantages of RMHMC
over HMC. A high-dimensional funnel with a high curvature is analyzed by both
algorithms. HMC only explores a small area of the funnel, whereas the RMHMC
(here with a diagonal SoftAbs metric) is able to explore the funnel more efficiently.

this algorithm, after applying the Hamiltonian equations of motion, are similar to
geodesics on a Riemannian manifold, hence the name Riemannian Manifold Hamil-
tonian Monte Carlo. But what exactly should one choose for the metric ~Σ(~q)? One
of the motivations for this algorithm was that it should be sensitive to the curvature.
Therefore the metric should contain the second derivatives of the likelihood space.
At first sight a reasonable choice seems to be the Hessian matrix,

Hij =
∂2V

∂qi∂qj
, (6.21)

because in a convex neighborhood the target distribution can be approximated with
the use of it[Beta12]. However this is only true if the target distribution is globally
convex - something we cannot take for granted for all possible likelihood distribu-
tions. In 2012 Michael Betancourt presented a solution to this problem. His so-called
SoftAbs metric represents a way to create a well-behaved metric from the Hessian
matrix. This metric is based on exponential maps and requires a lot of complicated
calculations.

6.6.2 Implementation

Like HMC, RMHMC uses many of the standard routines that were presented in
section 6.4.1. The programs that are specific to RMHMC can be found in the files
KFMCRiemannian.cxx and KFMCRiemannian.h. The main parts of the program
can be found in the first file. It starts with the computation of the needed matrices
(program-section KFMCRiemannian::calculateMatrices). In the following 600 lines
of code all the other needed calculations are carried out, before the Walk-algorithm
is started. This method is the heart of the program because it proposes the next
step. In the end the new step is evaluated with the Metropolis-algorithm and either
accepted or discarded. This implementation was carried out according to [Beta12].
Important parts of the algorithm are described in the following.
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• At first an eigendecomposition of the Hessian H is conducted:

H = Q · λ ·QT . (6.22)

Q is the matrix of eigenvectors and λ is a matrix whose diagonal elements are
the eigenvalues λi of H. According to the SoftAbs algorithm, the metric for
H can be written as

oHo = Q · oλ o ·QT , (6.23)

where oλo = Diag(λi coth(αλi)).

• For the Hamiltonian evolution the program needs the gradient of the quadratic
form, pT · oHo−1 · p ,

∂(pT · oH o−1 ·p) = pT · ∂ oH o−1 ·p
= −pT · oH o−1 ·∂ oH o · oH o−1 ·p
= −(QT · p)T [J ◦QT · ∂H ·Q](QT · p).

(6.24)

For the last step the use of the Hadamard product ◦ is needed10. J is a matrix
represented by

Jij ≡
λi coth(αλi)− λj coth(αλj)

λi − λj
. (6.25)

• For the solution of the Hamiltonian equations the gradient of the log determi-
nant, log | oH o |, is required:

∂ log | oH o | = Tr[Q(R ◦ J)QT · ∂H]. (6.26)

The matrix R is given by

R = Diag

(
1

λi coth(αλi)

)
. (6.27)

6.6.3 Results

The algorithm was implemented according to [Beta12] and is fully functioning for
simple likelihood distributions. However, it runs into difficulties for our KATRIN
likelihood. This is due to the values that show up during the calculations. Some
can be very big (in the area of 1020 − 1050 and even larger), while others almost
tend towards zero. This results in problems because the numerical precision of the
computer is not good enough to deal with a mixture of such extreme values. This is
a topic of current “work in progress” and the matter will hopefully be resolved soon.
Until this has happend the workings of this method will be demonstrated on a basic
function:

L(x, y) = x2 + y2. (6.28)

10The Hadamard product, as it is defined in [Mill07]: A and B are m × n matrices. The
Hadamard product of A and B is given by [A ◦B]ij = [A]ij [B]ij for all 1 ≤ i ≤ m, 1 ≤ j ≤ n.
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Figure 6.33: Convergence of the Riemannian Manifold Hamiltonian Monte Carlo
method for a two-dimensional parabolic likelihood. The algorithm converges within
a few steps towards the minimum at x = y = 0, where it begins sampling (see figure
6.34).

Calculations with modest input functions like this do not cause any problems, even
when they are in more than two dimensions. The start values were x = 2 and y = 2.
In figure 6.33 the convergence can be observed. Similar to HMC, this algorithm
converges directly towards the minimum (which is at x = y = 0). During the
sampling process the area near this minimum is explored and thereby an image of
the likelihood function is created. This can be seen in figure 6.34, which clearly
depicts the two-dimensional parabola. If the sampling is depicted in one dimension
(see figure 6.35), the similarities to the other Monte Carlo methods, HMC and
Gaussian transition kernel, can be seen clearly. The sampler walks around near
the minimum and the values are added into the Markov Chain. From this file one
can easily obtain the posterior distribution. Smearing and other variations are also
possible for this algorithm.
When the RMHMC method is compared to other sampling approaches, it can be
seen that the value of the time-normalized effective sample size ESS

t
is, for some

likelihood functions, even higher than that of other methods (see e.g. [GiCa11]).

6.7 Comparison of the Algorithms

In this section the pros and cons of the different methods are discussed with regard
to their runtime, the convergence time and the sampling process. This is done with
particular emphasis on the comparison between the Gaussian transition kernel and
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Figure 6.34: The sampling process of the RMHMC method clearly yields the input
function, a two-dimensional parabola.

Figure 6.35: Sampling in one dimension results in a Markov Chain that is similar to
those obtained by the other Monte Carlo methods, HMC and Gaussian transition
kernel.
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the Hamiltonian Monte Carlo method. These two have the highest significance for
present-day KATRIN analysis.

6.7.1 Runtime and Effective Sample Size

The runtime was not always mentioned in the above calculations. This is due to
the fact, that the KATRIN computation cluster, on which the calculations were
performed, allocates its calculations capacity according to the demand. This means
sometimes calculations are performed faster, just because a lot of cores and mem-
ory are not in use. However, the average computation times for the examples with
the Metropolis algorithm with a Gaussian transition kernel (section 6.4.2) were in
the area of five minutes. The Hamiltonian Monte Carlo examples (section 6.5.3)
took between three hours and two days. This runtime seems to be extremely high
compared to frequentist approaches like Minuit. That is true and due to the fact
that the calculations are more complicated. However, the runtime can be reduced
significantly by disabling the computation of ESS. This is only needed for the classi-
fication of the algorithms and especially for their comparison, but does not influence
the results in any way. Without ESS the runtime of the Metropolis algorithm with
Gaussian transition kernel is reduced to less than one minute and for the Hamilto-
nian Monte Carlo algorithm it is reduced to about 45 minutes11. This is in about
the same area of the standard frequentist methods Minuit and Minos that need
several minutes to accomplish a similar task - finding the minimum of the KATRIN
likelihood and defining confidence limits.
This runtime difference is one of the most apparent differences between the two
methods. At first sight the Gaussian transition kernel seems to be a clear winner.
However, the values for the time-normalized effective sample size ESS

t
indicate that

this is not always the case. This value shows how many usable samples (i.e. sam-
ples without autocorrelation) are created per time unit. Because the HMC method
samples more effectively, it creates more usable samples and the ESS value is always
up to ten times higher.
In the first and third example, the time-normalized effective sample size of HMC is
about ten times smaller, but for the second example (the one where the start-values
were the farthest away from the minimum) its value is about three times higher.
This shows, again, the advantage of HMC, when confronted with complicated start-
ing conditions.
The runtime for the RMHMC algorithm will be even higher than the one of HMC.
The calculation of the gradient informations slows HMC down, but the calculations
for RMHMC do not stop there. At some points even the third derivatives are re-
quired. However RMHMC can be thought of as an additional tool and never as a
standard approach, so this high runtime should not matter. For some likelihood
distributions the time-normalized effective sample size of RMHMC is even expected
to improve [GiCa11].

11Even though the second calculations were not performed on the computation cluster, but on
a regular computer (E8400 @ 2 times 3.00 GHz).
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6.7.2 Convergence Rate

Another obvious difference between the algorithms is the convergence time. Figures
6.9 and 6.28 show the steps it takes for the sampler to converge towards the mini-
mum. The gradient information that is used in the HMC method leads the sampler
straight towards the minimum, so that sampling can begin after less than 20 steps.
The Gaussian transition kernel, however, does not have this information. This fact
can be seen clearly in figure 6.9: The sampler walks around randomly and even
moves away from the minimal value. It takes about 750 steps (and for the signal
amplitude even more than 2000) to converge.
That means, if the approximate area of the minimal value is not known, the HMC
method should be the instrument of choice. It will use gradient information to con-
verge faster and therefore has a huge advantage over the basic Gaussian transition
kernel. Only in cases where the likelihood function is so complicated that an eval-
uation with this method fails, the RMHMC approach should be used. Provided of
course its implementation is complete - but the preliminary findings (see figure 6.33)
are already very promising.

6.7.3 Sampling Process

Once the minimum is found the sampling process is the heart and soul of the algo-
rithms. It has been demonstrated that all methods yield good results in this area
(see figures 6.6, 6.11, 6.15 for the Gaussian transition kernel, figures 6.20, 6.25, 6.29
for HMC and figure 6.35 for RMHMC). However some differences become apparent.
For the Gaussian transition kernel random-walk behavior can be observed (the ver-
tical stripes in the figures). According to [Neal12] this avoidance of random-walk
behavior is one of the major benefits of Hamiltonian Monte Carlo. The Markov
Chains obtained with this method are very randomly distributed. This leads to the
higher numbers for the effective sample size - more of the samples, obtained with
HMC, can be used. The sample created with RMHMC looks similar to the one
obtained using HMC. Here almost no random-walk behavior is to be observed, too.

6.7.4 Autocorrelation

The fact that HMC’s effective sample size is so much higher is due to the instance
that the autocorrelation of the samples is significantly lower. This can be seen
when the figures 6.8, 6.13 and 6.17 (Gaussian transition kernel) are compared with
6.22, 6.27 and 6.31 (Hamiltonian Monte Carlo). The limits, between which the
autocorrelation values lie, are about five times smaller for HMC. Also, some kind
of random-walk behavior for the Gaussian transition kernel can be observed, which
reflects the random walks we have seen in subsection 6.7.3.

6.7.5 Conclusion

In this chapter three Markov Chain Monte Carlo algorithms have been presented
and their implementations into the Kasper-software, which is the KATRIN analysis
framework, have been discussed. Two of these algorithms, MCMC with a Gaussian
transition kernel and Hamiltonian Monte Carlo, work extremely well and cover ev-
erything that is required for the KATRIN analysis - now and in the near future. Also,
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ground work has been done for the rare case that even more complicated likelihood
functions need to be dealt with. For this case Riemannian Manifold Hamiltonian
Monte Carlo was implemented into the analysis framework. Even though currently
it cannot prove its full potential, it will soon be able to provide another good alter-
native to the well-established frequentist methods.
All of these Bayesian Markov Chain Monte Carlo methods have the advantage that
they provide a direct way to obtain the posterior distribution (see figure 6.18), by
sampling of the likelihood function. Thanks to their flexibility and their power to
deal with a high number of parameters, they are also able to deal with likelihood
distributions that implement a sterile neutrino, or even multiple sterile neutrinos.
For this task the HMC method seems to be the most appropriate because of its
better convergence behavior and the higher ESS

t
-value.

Despite the benefits over the frequentist methods that have been used for the simu-
lated data analysis of KATRIN for a long time, the Bayesian methods are not only
an alternative, but also an addition. They provide the chance to benchmark KA-
TRIN results internally and compare different methods with each other. This will
ensure a high quality analysis.
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During the course of this Diploma thesis we took a journey through the realms of
neutrino- and astrophysics. We started at the very beginning, in 1930, with the
postulation of a tiny particle, called neutrino, in order to save the laws of energy-
and momentum conservation. After a basic introduction to the topic, we had an
excessive look at the data analysis and simulation of the KATRIN experiment that
has the ability to unravel one of the last secrets of neutrinos: their absolute mass.

The neutrino was detected less than 60 years ago and still not all of its properties
are completely understood. The measurement of one of its features, the ν-mass,
is a focus of modern research because of its huge implications for astrophysics and
cosmology. There are several different approaches to measure this mass, e.g. using
CMBR and LSS data, measuring supernova neutrinos or β-decay experiments. The
KATRIN experiment is a direct, model-independent measurement, which is more
precise than any of its predecessors.
It can be roughly divided into four main parts. The WGTS is the tritium source that
ensures a stable flow of β-electrons that originate from the decay of tritium. These
electrons are then guided through the transport section towards the spectrometers.
The DPS and CPS that make up the transport section ensure that no tritium enters
the ultra-high vacuum areas. The main spectrometer is operated as a MAC-E filter
and allows only electrons above a certain energy threshold to pass. These electrons
are measured inside the focal plane detector. With the use of extensive data analysis
algorithms the mass of the electron antineutrino can be extracted from the resulting
integrated energy spectrum.

After these introductory chapters, this work was dedicated to a fascinating part of
astrophysics: the dark matter phenomenon. Even though it makes up the majority
of matter in the universe it is still unknown today what dark matter consists of. A
possible candidate for a dark matter particle is a sterile neutrino in the keV range.
This hypothetical particle only interacts gravitationally and is exceptionally difficult
to determine. However, sterile neutrinos do mix with regular neutrinos. Provided
the mixing angle is not too small, their existence could be accountable for a kink
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in the spectra of β-decay experiments. A kink that a future version of KATRIN
might be able to discover. To do so, KATRIN needs to be modified to measure not
only the endpoint region, but the entire range of the decay-spectrum. Also, the data
analysis and simulation need to be augmented to meet the new requirements.
It was the task of this thesis to implement some modifications for this purpose.

The most important corrections for the tritium β-spectrum were shown in chapter 5.
The complete Fermi function, for one thing, takes the electro-magnetic interactions
between the β-electron and the daughter nuclei HeT+ into account. Additionally,
radiative corrections that can be used over the whole range were implemented into
the software framework. These take care of the energetic influences of emitted real
and virtual photons. The excitations of the daughter nuclei are accountable for
energy “lost” in the decay and need to be considered as well. For the standard KA-
TRIN experiment the excitation energy is described with a final state distribution.
For this thesis a more complete function was implemented.
All of these corrections are integrated into the framework and can be used to sim-
ulate a spectrum. They have a significant influence on the shape of the spectrum,
which is raised on average by about half of its original height. The influence of the
different corrections was exemplified in figure 5.7.

The other main and even more extensive part of this work are new tools for the KA-
TRIN data analysis. The implementation of Markov Chain Monte Carlo (MCMC)
methods can be used for two things. On the one hand, it is vital for the future
analysis of sterile neutrino data. The additional parameters that are needed for the
proper description of at least one further neutrino render the analysis for basic fre-
quentist methods almost impossible. MCMC methods, however, are able to handle
many free parameters with ease. They can, on the other hand, also be used to-
day. As Bayesian methods, they provide the opportunity to easily obtain credibility
intervals and parameter correlations. As an alternative approach to the already im-
plemented ways of data analysis, they represent a chance to benchmark and double
check results internally and verify the credibility of results.

The discussed methods include MCMC with a Gaussian transition kernel, Hamilto-
nian Monte Carlo and Riemannian Manifold Hamiltonian Monte Carlo. The former
is the most straight-forward algorithm. The sampler walks around randomly in the
likelihood space and is evaluated with the use of the Metropolis ratio. This method
is quite fast and delivers good results, however, it takes many steps to converge
towards the minimum and the obtained samples display some autocorrelation.
Hamiltonian Monte Carlo uses gradient information to guide the sampler towards
the minimum. This permits fast convergence and, thanks to the specific architecture
of the algorithm, it displays almost no autocorrelation. It is better suited for more
complicated likelihood functions, which makes it a great match for the requirements
of the sterile neutrino analysis.
A way to deal with even more complicated input functions is represented by Rie-
mannian Manifold Hamiltonian Monte Carlo. This algorithm takes the curvature of
the space into account and shows its strength analyzing curved distributions like a
funnel. Such functions are not expected for the sterile neutrino analysis, therefore
it plays a subordinate role within the KATRIN data analysis. It can, nevertheless,
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be an important tool to validate the results of the other algorithms, even though its
computation time is significantly higher. It will also come in handy if new likelihood
functions that display a high curvature, need to be analyzed in the future.
A detailed comparison of the algorithms can was given in section 6.7.

KATRIN will start taking data for the electron antineutrino mass measurements in
2015. The measurements will take about three years, in order to collect enough data
for the sensitive analysis. Even if sterile neutrino measurements could start right
afterwards, it would leave us with plenty of time to improve the simulation and
analysis software even further. MCMC with Gaussian transition kernel and HMC
do not require any form of modification, but the intricacies of RMHMC open some
areas of further research.

In the case that the sterile neutrino mixing angle is very small, it may also be
advisable to implement even more corrections for the spectrum calculation. Possible
effects were presented in section 5.4. They can be added to the program-branch that
was written for this thesis.

With the use of the implemented corrections and analysis algorithms, KATRIN has
a great chance to pin down the mass of the electron antineutrino. The new spectrum
calculations and analysis methods also extend KATRIN’s abilities towards another
ambitious project: the discovery of the mysterious particle that is the sterile neu-
trino. Both observations would be of great significance, as they complete mankind’s
understanding of astrophysics and cosmology and help us perceive “whatever holds
the world together in its inmost folds” [Goet08].
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A. Implementation of the
Corrections for the Tritium
β-Spectrum

It was shown in chapter 5 that in order to be able to detect sterile neutrinos with
a modified version of the KATRIN experiment a new, more detailed tritium β-
spectrum is required. It is shown in this appendix how these corrections are imple-
mented into the Kasper analysis framework. The used programming language is
C++ and the code is fully functional.
Comments within the code enable an easy understanding.

• All of the corrections can be found in a separate branch within the Kas-
siopeia-framework. The name of the branch is sschams SpectrumComplete.
The following files can be found in that branch (the file extensions are .cxx
and .h).

• KFSandbox: This is the program where all the routines are started. It also
includes algorithms that enable comparisons between the different corrections.

• KSCDifferentialSpectrumComplete: In this file the code with the full Fermi
function and the radiative corrections can be found. There are also approxi-
mations for the Fermi function, in case this is needed. The final state distri-
bution is not dealt with in the same way. Because of the structure how the
final states are implemented in Kasper, they have to be in a separate file (see
items SSCFinalStatesNew and FSD Tail Universal.txt).

• SSCDifferentialSpectrumFSD: In this program the regular corrections that are
only valid in the endpoint region can be found. This is important for compar-
isons with the regular KATRIN spectrum calculations.

• SSCFinalStatesNew: The code in this file deals with the final state distribu-
tion. The file “FSD Tail Universal.txt” is used for the full distribution.
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• FSD Tail Universal.txt: This file includes a table of the calculated final state
distribution for the whole decay spectrum.

Beyond that there were two calculations that might require further information:

• For the Fermi corrections the Γ(a)-function with a complex argument was
needed. C++ and ROOT cannot handle this intricate function. So the prob-
lem was solved by the implementation of the GNU scientific library.

• The radiative corrections require the Spence function L(z) =
∫ z

0
ln |1−t|

t
dt. This

integral was approximated to a very high precision using the following identity
and a for-loop:

L(z) =

∫ z

0

ln |1− t|
t

dt =
∞∑
k=1

zk

k2
. (A.1)

This approximation is only valid if z is not close to 1, which is the case.



B. Implementation of the MCMC
Analysis Methods

In the following an overview over the implementation of the Markov Chain Monte
Carlo methods into the Kasper-framework is given. The implementation will, in
all likelihood, be described in further detail in [Haag14].
The presented programs can be found in the Kasper/KaFit-folder, mainly in the
MCMC -sub-folder. These basic routines also provide the foundation for the Hamil-
tonian Monte Carlo and Riemannian Manifold Hamiltonian Monte Carlo methods
(see sections 6.5 and 6.6).
Just a reminder: We want to get a sample of the posterior distribution by only using
the KATRIN likelihood and prior information.

• The routine is started from the shell by typing ./KFmcmc.

• A configuration file contains all the necessary configuration data. It can be
found and edited in the config-folder. In this file all the parameters can be
set and the method (“Metropolis”, “Hamiltonian”, or “Riemannian”) can be
chosen. A typical configuration file is shown in appendix C.

• The Markov Chain starts either from a randomly chosen point, or from the
value specified in the config file. This is initialized by the file KFMarkovChainMC.cxx
where the main procedures can be found.

• In KFMCMetropolis.cxx we find the two steps of the Metropolis-Hastings al-
gorithm. “Walk” suggests a new state and “Test” evaluates this proposed state
according to the Metropolis ratio.

• KFMCMCState.cxx provides us with the current state if this is needed.

• The file KFMCMCChain.cxx contains the list with all the elements that are
the Markov Chain. Using this program we can get different values, like the
Median of the Markov Chain.
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• With the use of an input function the program KFMCMCProposal.cxx finds
the next state which is then evaluated in KFMCMetropolis.cxx. This is also
the place where boundaries are implemented.



C. Configuration File for the
MCMC Analysis

Simulations within the KATRIN analysis framework Kasper can be started from
the shell of any Linux system where it is installed. Simulations with Markov Chain
Monte Carlo (see chapter 6) for example are executed with the command KFmcmc.
All the settings for the simulation do not need to be set for each run separately;
they can be predefined in a configuration file. An example for such a configuration
file is following.

<KaFit

OutputFile="{output=HamAwayTest.root}"

NFits="{nfits=100}"

Fitter="myMinuit2"

Seed="{seed=12345}"

/>

<Fitter Type="KFMinuit2"

Name="myMinuit2"

EstimationMethod="myKatrinLogL"

RandomizeStartValues="True"

Minimizer="minimize"

Strategy="2"

UseMinos="true">

<Parameter Name="E0" StartValue="0.0" Error="2.0"

LowerLimit="-200.0" UpperLimit="200.0" Fixed="false" />

<Parameter Name="mnu2" StartValue="0.0" Error="2.0"

LowerLimit="-200.0" UpperLimit="200.0" Fixed="false" />
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<Parameter Name="Sig" StartValue="1.0" Error="0.05"

LowerLimit="0.0" Fixed="false" />

<Parameter Name="Bg" StartValue="0.01" Error="0.01"

LowerLimit="0.0" Fixed="false" />

<Parameter Name="epsT" StartValue="0.95" Error="0.001"

UpperLimit="1.0" LowerLimit="0.5" Fixed="false" />

<Parameter Name="varQU" StartValue="0.0" Error="0.01"

LowerLimit="0.0" Fixed="true" />

</Fitter>

<Fitter Type="KFmcmc"

Name="myMarkovChain"

EstimationMethod="myKatrinLogL"

RandomizeStartValues="False"

Sampler="Hamiltonian"

Epsilon="1.0"

Alpha="0.1"

NumberOfFrogLeaps="10"

Length="{length=50000}"

Thinning="1"

FunctionType="LogLikelihood"

ErrorScaling="{scaling=0.1}"

CycleLength="50"

BurnInModeCycles="0"

ErrorControlMode="0"

AcceptanceRate="0.651"

ErrorControlTolerance1="1.5"

ErrorControlTolerance2="1.8"

ErrorControlDampening="0.7"

ErrorControlDeactivation="50"
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ParameterProbingCycleLength="50"

ParallelTemperingFrequency="50"

Betas="1.0"

>

<Parameter Name="E0" StartValue="18575.0" Error="0.0015"

LowerLimit="18525.0" UpperLimit="18600.0" />

<Parameter Name="mnu2" StartValue="0.0" Error="0.0085"

LowerLimit="-10.0" UpperLimit="10.0" />

<Parameter Name="Sig" StartValue="1.0" Error="0.00019"

LowerLimit="0.0" />

<Parameter Name="Bg" StartValue="0.010" Error="0.00002"

LowerLimit="1E-5" />

<Parameter Name="epsT" StartValue="0.95" Error="0.0001"

LowerLimit="0.5" UpperLimit="1.0" Fixed="true" />

<Parameter Name="varQU" StartValue="0.0" Error="0.5"

LowerLimit="0.0" Fixed="true" />

</Fitter>

<EstimationMethod Type="KFLoglikelihoodKatrin"

Name="myKatrinLogL"

Function="Poisson"

RunGenerator="myRungenStd"

SpectrumSimulator="mySpecSim"

EnableInterpolation="False">

<Systematic ParameterIndex="4" Name="epsT" Mean="0.95" Error="0.01" />

<Systematic ParameterIndex="5" Name="varQU" Mean="0.0" Error="0.01" />

</EstimationMethod>

<SpectrumSimulator

Name="mySpecSim"

Spectrum="myintspecmeasurement"

MixingStrategy="BeforeIntegration"

TritiumPurity="0.95"

SigmaQU="0.0"

IntegrationPrecision="1E-5"

IntegrationMinSteps="16"

/>
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<RunGenerator

Name="myRungenStd"

Spectrum="myintspecmeasurement"

Smearing="{smear=true}"

E0="18575"

SquaredNeutrinoMasses="0.0"

SquaredMixingParameters="1.0"

MixingStrategy="BeforeIntegration"

TritiumPurity="0.95"

SigmaQU="0.0"

IntegrationPrecision="1E-5"

IntegrationMinSteps="16"

>

<RuntimeSchedule Type="KFRuntimeSchedule"

InputFile="time-3y-jopti30eV10mHz.dat"

TotalMeasurementTime="94608000" />

<Background Type="KFBackgroundPoisson" Rate="0.01" />

</RunGenerator>



Deutsche Zusammenfassung

Das Karlsruhe TRItrium Neutrino (KATRIN) Experiment ist ein bemerkenswertes
Projekt. Über 150 Wissenschaftler, Ingenieure und Studenten arbeiten in fünf
verschiedenen Ländern daran, die Masse des Elektron-Antineutrinos mit noch nie
dagewesener Genauigkeit zu bestimmen. Darüber hinaus könnte eine Erweiterung
des Experiments dazu führen, in noch unbekanntere Gebiete der Physik vorzu-
stoßen. Im Jahre 2011 wurde in [dVeg+11] vorgeschlagen, mit der Hilfe von KATRIN
im Zerfallsspektrum von Tritium nach Signaturen steriler Neutrinos zu suchen.

Die Aufgabe der vorliegenden Arbeit war es, das β-Spektrum des Tritiumzerfalls zu
diesem Zweck genauer zu berechnen und die Datenanalyse-Methoden so zu erwei-
tern, dass man sie zur Suche nach sterilen Neutrinos nutzen kann.

Diese Zusammenfassung orientiert sich an der Gliederung der Diplomarbeit. Zu-
nächst werden der astrophysikalische Hintergrund und insbesondere die zugrun-
deliegende Neutrinophysik erläutert. Dann wird das KATRIN Experiment vorge-
stellt. Im Anschluss daran wird der Rahmen dieser Arbeit auf dunkle Materie und
sterile Neutrinos ausgedehnt. Das sterile Neutrino könnte das Teilchen sein, das
einen Großteil der dunklen Materie ausmacht. Um seine Existenz nachzuweisen,
muss das β-Spektrum des Tritiumzerfalls sehr genau bekannt sein. Aus diesem
Grund werden im darauffolgenden Abschnitt Korrekturen vorgestellt, die das bisher
bekannte Spektrum vervollständigen. Der letzte Teil dieser Arbeit handelt von
Bayes’schen Analysemethoden, die zum einen für die Standard-KATRIN m2

ν-Suche,
aber auch für die Analyse von sterilen Neutrino Signaturen verwendet werden kön-
nen.

Neutrinos wurden im Jahre 1930 von W. Pauli postuliert, um die scheinbare Ver-
letzung der Energie- und Impulserhaltungssätze beim β-Zerfall zu erklären. Es sind
schwer nachzuweisende Spin-1

2
Fermionen, die keinerlei Ladung tragen. Bisher wur-

den lediglich linkshändige Neutrinos und rechtshändige Antineutrinos beobachtet.
[Zube12]
Neutrinos sind die am häufigsten vorkommenden bekannten Teilchen in unserem
Universum und es gibt theoretisch viele Möglichkeiten, ihre Masse zu bestimmen.
So können sowohl kosmologische Daten (beispielsweise von der kosmischen Mikro-
wellenhintergrundstrahlung) als auch astrophysikalische Beobachtungen (Supernova-
Neutrinos, ultrahochenergetische kosmische Strahlen) für die Bestimmung herange-
zogen werden. Auch Experimente mit neutrinolosem doppel-β-Zerfall bieten sich
an, sofern Neutrinos Majorana-Teilchen sind. Direkte Messungen mit Hilfe des ein-
fachen β-Zerfalls sind besonders geeignet, da sie ohne zusätzliche Modell-Annahmen
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die Neutrinomasse bestimmen können. Das Wissen über diese Masse ist wichtig für
Teilchenphysik und Kosmologie und könnte unter anderem offene Fragen bezüglich
der Strukturbildung und Evolution des Universums beantworten. [KATR04]

Das KATRIN Experiment ist eine solche modellunabhängige Messung. Bei der
Beobachtung des Tritiumzerfalls kann durch die Messung der entstehenden β-Elek-
tronen auf die Masse des Neutrinos zurückgeschlossen werden. KATRIN besteht aus
folgenden Komponenten. In der WGTS (

”
Windowless Gaseous Tritium Source“, die

fensterlose Tritiumquelle) zerfällt das molekulare Tritium in einen Tochterkern, ein
Elektron und ein Elektron-Antineutrino. Mit der Hilfe starker Magnetfelder wer-
den die Elektronen durch die DPS (

”
Differential Pumping Section“) und die CPS

(
”
Cryogenic Pumping Section“) zu den Spektrometern geleitet. Eventuell ausge-

tretenes Tritium wird auf dem Weg eingefangen und zur Quelle zurückgeführt. Die
Spektrometer werden als MAC-E-Filter (

”
Magnetic Adiabatic Collimation with an

Electrostatic Filter“) betrieben und lassen nur Elektronen passieren, die eine gewisse
Mindestenergie haben. Im Detektor wird dann ein integriertes Elektronen-Spektrum
aufgenommen. Da die Neutrinos eine Masse haben und folglich Energie davontragen,
lässt sich aus den gemessenen Raten die Neutrinomasse extrahieren. [KATR04]

Auch sterile Neutrinos mit einer Masse von bis zu 18 keV könnten Spuren im β-
Spektrum hinterlassen. Zwar unterliegen diese hypothetischen Teilchen nicht der
schwachen Wechselwirkung, jedoch mischen sie mit aktiven Neutrinos und könn-
ten folglich beim Tritiumzerfall Energie davontragen. Sterile Neutrinos sind rechts-
händig und manche Wissenschaftler vermuten, dass sie den Hauptbestandteil dun-
kler Materie ausmachen [dVeg+11].
Es gibt etwa fünfmal so viel dunkle wie baryonische Materie in unserem Universum.
Eine der ersten Evidenzen für ihre Existenz wurde 1933 von F. Zwicky veröffentlicht.
Er hatte beobachtet, dass die hohen Geschwindigkeiten einzelner Galaxien im Coma-
Galaxienhaufen nur dann in Übereinstimmung mit dem Virialsatz sind, wenn eine
wesentlich höhere Massendichte vorherrscht als die beobachtete. Mit der Existenz
dunkler Materie ließe sich dieses Phänomen erklären, genau wie Beobachtungen mit
dem Gravitationslinseneffekt und die Materietrennung am Bullet-Galaxienhaufen.
Bisher wurde kein Teilchen gefunden, das diese mysteriöse Substanz erklären kann.

Mit dem Nachweis des sterilen Neutrinos könnte sich dies ändern. Um die Sensitiv-
ität des KATRIN Experiments in diesen Bereich zu erweitern, sind genaue Berech-
nungen zum β-Spektrum erforderlich. Die Grundstruktur des Spektrums erhält man
mit Hilfe von Fermis Goldener Regel, die den Übergang von einem quantenmech-
anischen Zustand zu einem anderen beschreibt. Zusätzlich zu dieser Grundform
müssen verschiedene Korrekturen, die einen Einfluss auf den Verlauf des Spektrums
haben, berücksichtigt werden. Die Korrekturen, die für die Messung der Elektron-
Antineutrinomasse verwendet werden, sind lediglich Näherungen, die ausschließlich
in der Endpunktregion des Spektrums zulässig sind. Daher mussten weiterreichende
Verbesserungen implementiert werden. Im Rahmen dieser Arbeit wurden Fermi-
Korrekturen, Strahlungskorrekturen und eine vollständige Endzustandsverteilung in
das Simulations-Framework implementiert. Der Einfluss der beiden größten Korrek-
turen ist in Abb. C.1 dargestellt.
Die Fermi-Korrekturen beschreiben die Wechselwirkung des davonfliegenden β-Elek-
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trons mit dem elektromagnetischen Feld des Tochterkerns. Diese energieabhängige
Korrektur lässt sich aus der Dirac-Gleichung herleiten und macht sich deutlich im
Verlauf des Spektrums bemerkbar. [Wilk82]
Die Emission von virtuellen und reellen Photonen während des Zerfalls, hat ebenfalls
einen Einfluss auf die Energie des β-Elektrons. Mit der Einführung von so genannten
Strahlungskorrekturen kann man diesem Energieverlust Rechnung tragen. Auch der
Einfluss dieser Korrekturen ist deutlich in Abb. C.1 zu sehen. [Glü93]
Einen wesentlich geringeren Einfluss auf die Energie des Elektrons hat die Berück-
sichtigung der vollständigen Endzustandsverteilung des Tochtermoleküls. Die bei
dem Zerfall freiwerdende Energie teilt sich folgendermaßen auf. Ein Teil geht in die
Masse und die kinetische Energie des Elektrons. Ein anderer sorgt für das Neutrino
und dessen Energie. Der Rest bleibt beim Tochter-Molekül zurück, zum einen als
Rückstoßenergie, zum anderen als Anregungsenergie. Da es sich bei dem Tochterkern
HeT+ um ein zweiatomiges Molekül handelt, sind neben der elektronischen Anre-
gung auch Anregungen der Vibrations- und Rotationszustände möglich. Diese statis-
tischen Anregungen werden mit Hilfe der Endzustandsfunktion beschrieben. Auch
hier ist für das gegenwärtige KATRIN Experiment lediglich die Funktion für das
Ende des Spektrums implementiert. Für diese Diplomarbeit wurde die Verteilung
erweitert. [SaJF00]

Der nächste große Teil dieser Arbeit befasst sich mit der Datenanalyse des KA-
TRIN Experiments. Um aus den gemessenen Elektronenraten die Neutrinomasse
zu extrahieren, wird ein Spektrum an die Messwerte gefittet. Der Abstand des
theoretischen Spektrums zu den Messpunkten wird solange minimiert, bis die op-
timale Konfiguration gefunden ist. Diese Minimierung findet standardmäßig mit
Minuit statt. Bei Fits mit vielen freien Parametern, wie es sich bei der Suche nach
sterilen Neutrinos ergibt, stößt diese frequentistische Methode an ihre Grenzen. Da-
her wurden im Rahmen dieser Diplomarbeit Bayes’sche Markov Chain Monte Carlo
(MCMC) Algorithmen implementiert. Neben der Möglichkeit zur Analyse von ste-
rilen Neutrino Signaturen, stellen diese auch für das Standard KATRIN Experiment
eine hervorragende Ergänzung dar. Mit ihnen lässt sich nicht nur die Posterior-
Wahrscheinlichkeitsverteilung sampeln, die angibt mit welcher Wahrscheinlichkeit
der Messwert dem wahren Wert der Neutrinomasse entspricht, sondern auch Konfi-
denzintervalle berechnen und Korrelationen sichtbar machen. Außerdem bieten sie
die Möglichkeit als Vergleich zu den anderen Algorithmen herangezogen zu werden,
um intern die Analyseergebnisse zu evaluieren und Fehler auszuschließen.
Für diese Methoden benötigt man die KATRIN Likelihood-Funktion,

L(~x|θ) =
N∏
i=1

f(xi, θ), (C.1)

wobei xi die Messwerte sind und θ den Parameter beschreibt, an dessen wahrem
Wert man interessiert ist. Die Wahrscheinlichkeitsdichtefunktion des Messwertes xi
wird durch f(xi, θ) beschrieben.
Alle vorgestellten Methoden sampeln die Posterior-Wahrscheinlichkeitsverteilung,
indem sie das Minimum der KATRIN Likelihood-Funktion suchen und dann den
Bereich darum mehr oder weniger zufällig ablaufen. Je höher die Posterior-Wahr-
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Figure C.1: Das β-Spektrum des Tritiumzerfalls ohne Korrekturen ist in schwarz
dargestellt. Die Strahlungskorrekturen (blau) führen zu einem Faktor, der das
Spektrum leicht anhebt. Eine noch stärkere Erhöhung, sowie eine Verschiebung
des Maximums in Richtung niedriger Energiewerte, werden durch die Fermi-
Korrekturen (grün) hervorgerufen. Die Kombination beider Korrekturen ist in
lila dargestellt. Im Vergleich zu diesen Korrekturen sind die Auswirkungen der
vollständigen Endzustands-Verteilung des Tochtermoleküls so gering, dass man bei
diesem Maßstab keine Veränderung wahrnehmen kann.
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Figure C.2: Diese Abbildung zeigt die Konvergenz und das anschließende Sampling
mit Hilfe der Hamilton Monte Carlo Methode. Dargestellt ist lediglich die Bewe-
gung in der m2

ν-Dimension. In Wirklichkeit bewegt sich der Sampler mindestens
im vierdimensionalen Raum. Nach weniger als 20 Schritten hat der Sampler das
Minimum – in diesem Fall den Wert Null – erreicht und beginnt mit dem Sampeln.
Durch das wiederholte Ablaufen der Gegend um das Minimum wird die Posterior-
Wahrscheinlichkeitsverteilung nachgebildet.

scheinlichkeit an einem Punkt ist, desto häufiger wird der Sampler an ihm vor-
beikommen. Wenn dieser Algorithmus mit Hilfe des Metropolis Ratios evaluiert
wird, kann man zeigen, dass die resultierende Verteilung tatsächlich der gewün-
schten Posterior-Verteilung entspricht. [Greg10]
Die erste vorgestellte Methode ist MCMC mit einem Gauß’schen Transition Kernel.
Hier ist die Vorschlagfunktion für die nächste Position des Samplers eine mehrdimen-
sionale Gaußverteilung. Dieses vergleichsweise einfache Prinzip resultiert in einem
robusten Algorithmus, der jedoch langsam konvergiert und dessen gesampelte Stich-
proben Autokorrelationen aufweisen. [Greg10]
Bei der Hamilton Monte Carlo Methode ist die Vorschlagfunktion ausgeklügelter.
Die Likelihood-Funktion wird hier als Gravitationspotential aufgefasst und dem
Sampler eine Masse zugewiesen. Anschaulich kann man sich nun vorstellen, dass
der Sampler in Richtung des Minimums rutscht und auf dem Weg dorthin seine
potentielle Energie in kinetische umwandelt. Der gewonnene Impuls trägt den Sam-
pler über das Minimum hinaus und ermöglicht so eine genaue Abbildung der Mi-
nimumsumgebung. Als Input werden für diesen komplizierteren Algorithmus Gra-
dienteninformationen benötigt, was die Rechenzeit signifikant erhöht. Belohnt wird
man dafür mit einem schnellen Konvergenzverhalten, sehr niedrigen Autokorrela-
tionen und einem sehr robusten Algorithmus, der auch für komplizierte Likelihood-
Funktionen geeignet ist. Diese Eigenschaften machen die Hamilton Monte Carlo
Methode zu einem idealen Werkzeug für die sterile Neutrino Analyse. [Neal12]
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Für den Fall, dass eine zukünftige KATRIN-Likelihood noch komplizierter wird als
bisher angenommen und insbesondere über starke Krümmungen verfügt, wurde noch
eine weitere Methode implementiert. Diese heißt Riemannian Manifold Hamiltonian
Monte Carlo und berücksichtigt die Raumkrümmung mit Hilfe einer komplizierten
Metrik. Für die Berechnung benötigt dieser Algorithmus Ableitungen dritter Ord-
nung, was sich negativ auf die Rechenzeit auswirkt. Dafür liegen seine Stärken bei
stark gekrümmten Verteilungen. Da für KATRIN in absehbarer Zeit keine solchen
Verteilungen von Bedeutung sind, spielt diese Methode vorerst eine untergeordnete
Rolle. [Beta12]
Exemplarisch für diese drei MCMC Algorithmen ist in Abbildung C.2 das Konver-
genzverhalten von Hamilton Monte Carlo bei einer simulierten KATRIN Messung
dargestellt.

Mit der Hilfe der in dieser Arbeit vorgestellten und implementierten Spektrums-
korrekturen und Analysetools, ist das KATRIN Experiment bestens für die Zukunft
gerüstet. Die Markov Chain Monte Carlo Methoden können entweder direkt für
die Analyse der m2

ν-Daten verwendet werden, oder als Vergleich zu frequentistischen
Methoden. Darüber hinaus ermöglichen sie, zusammen mit den Erweiterungen zum
Tritium β-Spektrum, die Suche nach Signaturen steriler Neutrinos. Beide Entdeck-
ungen hätten große Bedeutung für Teilchenphysik und Kosmologie und würden einen
Blick darauf ermöglichen,

”
was die Welt im Innersten zusammenhält“ [Goet08].
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